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Abstract

In this addendum to [4], we provide a pair of counterexamples relevant to the theory of implicit

operations. More precisely, we exhibit a pp expansion of a variety that fails to be a variety (although

it is a quasivariety). Furthermore, we construct a sequence of varieties possessing a nonequational

congruence preserving Beth companion.

1. Introduction

An n-ary partial function on a set X is a function f : Y → X for some Y ⊆ Xn. In this

case, the set Y will be called the domain of f and will be denoted by dom(f). This notion

can be extended to classes of algebras as follows. An n-ary partial function on a class of

algebras K is a sequence ⟨fA : A ∈ K⟩, where fA is an n-ary partial function on A for each

A ∈ K. By a partial function on K we mean an n-ary partial function on K for some n ∈ N.
When f is a partial function on K and A ∈ K, we denote the A-component of f by fA.

Lastly, throughout this note by a formula we mean a first order formula.

Definition 1.1. A formula φ(x1, . . . , xn, y) with n ⩾ 1 in the language of a class of algebras

K is said to be functional in K when for all A ∈ K and a1, . . . , an ∈ A there exists at most

one b ∈ A such that A ⊨ φ(a1, . . . , an, b).

In other words, φ is functional in K when

K ⊨ (φ(x1, . . . , xn, y) ⊓ φ(x1, . . . , xn, z)) → y ≈ z.

In this case, φ induces an n-ary partial function φA on each A ∈ K with domain

dom(φA) = {⟨a1, . . . , an⟩ ∈ An : there exists b ∈ A such that A ⊨ φ(a1, . . . , an, b)},

defined for every ⟨a1, . . . , an⟩ ∈ dom(φA) as φA(a1, . . . , an) = b, where b is the unique element

of A such that A ⊨ φ(a1, . . . , an, b). Consequently,

φK = ⟨φA : A ∈ K⟩

is an n-ary partial function on K.

Definition 1.2. An n-ary partial function f on a class of algebras K is said to be

(i) defined by a formula φ when φ is functional in K and f = φK;

(ii) implicit when it is defined by some formula;

Date: December 16, 2025.
1



2 LUCA CARAI, MIRIAM KURTZHALS, AND TOMMASO MORASCHINI

(iii) an operation of K when for each homomorphism h : A → B with A,B ∈ K and

⟨a1, . . . , an⟩ ∈ dom(fA) we have ⟨h(a1), . . . , h(an)⟩ ∈ dom(fB) and

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an));

(iv) an implicit operation of K when it is both implicit and an operation of K.

We denote the class of implicit operations of K by imp(K).

In elementary classes, implicit operations admit the following description (see [4, Thm. 3.9]).

Theorem 1.3. Let f be a partial function on an elementary class K. Then f is an implicit

operation of K if and only if it is defined by an existential positive formula.

Example 1.4 (Monoids). A typical example of an implicit operation of the variety K of

monoids arises from the idea of “taking inverses”. More precisely, for every A ∈ K let fA be

the unary partial function on A with

dom(fA) = {a ∈ A : a is invertible}

defined for every a ∈ dom(fA) as

fA(a) = the inverse of a.

Then ⟨fA : A ∈ K⟩ is an implicit operation of K. ⊠

Although concrete examples of implicit operations have long been known, the theory of

implicit operations received its first systematic treatment in [4]. In this note, we exhibit two

counterexamples relevant to the general theory of implicit operations. For this, we assume

familiarity with the concepts and notation of [4], as well as with the basics of the theory of

Heyting algebras (see, e.g., [1, Ch. IX]).

2. A variety with a pp expansion that is a proper quasivariety

Consider the linearly ordered Heyting algebra C8 with universe

0 < a1 < a2 < · · · < a6 < 1.

We consider the algebra A obtained by endowing C8 with a constant for the element a5 as

well as with a pair of binary operations x+ y and x ∗ y and a pair of unary operations 2x
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and 3x defined for every a, b ∈ A as follows:

a+ b =


a6 if a = 0 and b ∈ {a6, 1};
a5 if a = 0 and b = a3;

a2 if (a = 0 and b /∈ {a3, a6, 1}) or (a ̸= 0 and b ̸= a1);

a1 if a ̸= 0 and b = a1;

a ∗ b =

{
1 if a = a4 and b = a6;

0 otherwise;

2a =

{
1 if a = a5;

0 otherwise;

3a =


1 if a ∈ {0, a6, 1};
a1 if a ∈ {a1, a2};
a3 if a ∈ {a3, a5};
a5 if a = a4.

Our aim is to prove the following.

Theorem 2.1. The variety V(A) has a pp expansion that is a proper quasivariety and is not

congruence preserving.

Proof. By [4, Thm. 12.9] every congruence preserving pp expansion of a variety is a variety.

So, it is sufficient to show that V(A) has a pp expansion that is a proper quasivariety. The

proof proceeds through a series of claims. First, observe that A− {a4} is the universe of a

subalgebra A− {a4} of A.

Claim 2.2. We have S(A) = {A,A− {a4}}.

Proof of the Claim. As A − {a4} is a subalgebra of A, it suffices to prove the inclusion

S(A) ⊆ {A,A − {a4}}, which amounts to SgA(∅) = A ∖ {a4}. First, observe that SgA(∅)
contains the interpretations 0, a5, and 1 of the constants. As

0 + 1 = a6, 1 + 0 = a2, 3a2 = a1, and 3a5 = a3,

we conclude that SgA(∅) contains a1, a2, a3, and a6 as well. Hence, SgA(∅) = A∖ {a4}. ⊠

Claim 2.3. Let C ∈ V(A) be a finite nontrivial chain with second largest element a. Then

C is subdirectly irreducible with monolith CgC(a, 1).

Proof of the Claim. It suffices to show that CgC(1, a) is the monolith of C. First, observe

that CgC(1, a) ∈ Con(C)−{idC} because a < 1, where 1 is the maximum of C. Then consider

θ ∈ Con(C) − {idC}. As θ ̸= idC , there exist distinct b, c ∈ C such that ⟨b, c⟩ ∈ θ. Since

b ≠ c, we have b↔ b = 1 and b↔ c ̸= 1, where x↔ y is a shorthand for (x→ y) ∧ (y → x).

As a is the second largest element of C, this implies (b ↔ b) ∨ a = 1 and (b ↔ c) ∨ a = a.

Together with ⟨b, c⟩ ∈ θ, this yields ⟨1, a⟩ ∈ θ, whence CgC(1, a) ⊆ θ. ⊠
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Observe that

θ = idA−{a4} ∪ {⟨a6, 1⟩, ⟨1, a6⟩}
is a congruence of A− {a4}. Then let

B = (A− {a4})/θ.

Claim 2.4. We have V(A)si = I({A,A− {a4},B}).

Proof of the Claim. Observe that all A,A− {a4}, and B are finite nontrivial chains. There-

fore, the inclusion from right to left follows from Claim 2.3.

To prove the inclusion from left to right, observe that the variety V(A) is congruence

distributive because it has a lattice reduct (see, e.g., [4, Thm. 7.2]). By Jónsson’s Theorem

(see, e.g., [3, Thm. 6.8]) and [2, Thm. 5.6(2)] we have V(A)si ⊆ HS(A). Together with Claim

2.2, this yields

V(A)si ⊆ H({A,A− {a4}}).
Therefore, to conclude the proof, it will be enough to show that A is simple and that, up to

isomorphism, the only nontrivial homomorphic images of A− {a4} are A− {a4} and B.

We begin by proving that A is simple, which means that Con(A) has exactly two elements.

In view of Claim 2.3, it suffices to show that CgA(a6, 1) = A × A. Observe that ⟨1, 0⟩ =
⟨a4 ∗ a6, a4 ∗ 1⟩ ∈ CgA(a6, 1). As the lattice reduct of A is a chain with extrema 0 and 1, this

guarantees that CgA(a6, 1) = A× A.

Lastly, we prove that, up to isomorphism, the only nontrivial homomorphic images of

A − {a4} are A − {a4} and B. By the definition of B it will be enough to show that for

every ϕ ∈ Con(A− {a4}),

ϕ /∈ {idA−{a4}, θ} implies ϕ = (A− {a4})× (A− {a4}).

Consider ϕ /∈ {idA−{a4}, θ}. Observe that the definition of θ and Claim 2.3 guarantee that

θ ⊊ ϕ. Therefore, there exist c, d ∈ A− {a4} such that ⟨c, d⟩ ∈ ϕ− θ. From the definition of

θ it follows that

c ̸= d and {c, d} ≠ {a6, 1}.
As c ̸= d and the lattice reduct of A − {a4} is a chain, we can assume that c < d. From

c < d, the right hand side of the above display, and the fact that a6 is the second largest

element of A− {a4} it follows that c < a6, whence c ⩽ a5. Consequently,

⟨1, a5⟩ = ⟨a5 ∨ 1, a5 ∨ c⟩ = ⟨a5 ∨ (c→ c), a5 ∨ (d→ c)⟩ ∈ ϕ

and, therefore, ⟨1, 0⟩ = ⟨2a5,21⟩ ∈ ϕ. As before, this yields ϕ = (A−{a4})× (A−{a4}). ⊠

Consider the pp formula

φ(x, y) = ∃z(x+ y ≈ 3z).

Claim 2.5. The formula φ(x, y) defines an extendable implicit operation f of V(A) such

that fA is a total function defined for every a ∈ A as

fA(a) =

{
a1 if a ̸= 0;

a3 if a = 0.
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Proof of the Claim. We will show that φ defines an extendable implicit operation f of V(A).

The description of fA in the statement will be an immediate consequence of our proof.

In view of [4, Cor. 8.14], it suffices to show that every member of V(A)si can be extended

to one of V(A) in which φ(x, y) defines a total unary function. Recall from Claim 2.4

that V(A)si = I({A,A− {a4},B}). As A − {a4} ⩽ A, we have V(A)si ⊆ IS({A,B}).
Consequently, it will be enough to show that φ(x, y) defines a total unary function both on

A and B.

We begin with the case of A. We need to prove that for every a ∈ A there exists a unique

b ∈ A such that A ⊨ φ(a, b). To this end, consider a ∈ A. We have two cases: either a = 0

or a ̸= 0. First, suppose that a = 0. Since

a+ a3 = 0 + a3 = a5 = 3a4,

the definition of φ guarantees that A ⊨ φ(a, a3). Therefore, it only remains to show that

b = a3 for every b ∈ A such that A ⊨ φ(a, b). Consider b ∈ A such that A ⊨ φ(a, b).

Then a + b = 3c for some c ∈ A. As a = 0, we have a + b ∈ {a2, a5, a6}. Together with

3[A] = {a1, a3, a5, 1} and a+ b = 3c, this implies a+ b = a5 From the definition of + it thus

follows that b = a3, as desired.

Then we consider the case where a ̸= 0. Since a + a1 = a1 = 3a1, the definition of φ

guarantees that A ⊨ φ(a, a1). Therefore, it only remains to show that b = a1 for every

b ∈ A such that A ⊨ φ(a, b). Consider b ∈ A such that A ⊨ φ(a, b). Then a + b = 3c for

some c ∈ A. As a ≠ 0, we have a + b ∈ {a1, a2}. Together with 3[A] = {a1, a3, a5, 1} and

a+ b = 3c, this implies a+ b = a1 From the definition of + it thus follows that b = a1.

Next we consider the case of B = (A− {a4})/θ. Since A− {a4} ⩽ A the definition of θ

guarantees that for every a, b ∈ A− {a4},
B ⊨ φ(a/θ, b/θ) ⇐⇒ there exists c ∈ A− {a4} such that

either a+A b = 3Ac or {a+A b,3Ac} = {a6, 1}.
(1)

Then let a ∈ A− {a4}. As before, we have two cases: either a = 0 or a ̸= 0. First, suppose

that a = 0. Since

a+A a6 = 0 +A a6 = a6 and 3Aa6 = 1,

from ⟨a6, 1⟩ ∈ θ it follows that

a/θ +B a6/θ = a6/θ = 1/θ = 3Ba6/θ.

By the definition of φ this guarantees that B ⊨ φ(a/θ, a6/θ). Therefore, it only remains to

show that b/θ = a6/θ for every b ∈ A−{a4} such that B ⊨ φ(a/θ, b/θ). Consider b ∈ A−{a4}
such that B ⊨ φ(a/θ, b/θ). Let c ∈ A−{a4} be the element given by the right hand side of (1).

As a = 0, we have a+A b ∈ {a2, a5, a6}. Together with 3c ∈ 3[A− {a4}] = {a1, a3, 1}, the
right hand side of (1) ensures that a+A b = a6. By the definition of + we obtain b ∈ {a6, 1}.
As ⟨a6, 1⟩ ∈ θ, we conclude that b/θ = a6/θ, as desired. Then we consider the case where

a ̸= 0. In this case, a+A a1 = a1 = 3Aa1. Therefore, B ⊨ φ(a/θ, a1/θ) by the definition of φ.

It only remains to show that b/θ = a1/θ for every b ∈ A− {a4} such that B ⊨ φ(a/θ, b/θ).
Consider b ∈ A−{a4} such that B ⊨ φ(a/θ, b/θ). As before, let c ∈ A−{a4} be the element

given by right hand side of (1). Since a ̸= 0, we have a +A b ∈ {a1, a2}. Together with
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3c ∈ 3[A − {a4}] = {a1, a3, 1} and the right hand side of (1), it follows that a +A b = a1.

By the definition of + we obtain b = a1, whence b/θ = a1/θ. ⊠

By Claim 2.5 the formula φ defines some f ∈ extpp(V(A)). Consider the f -expansion Lf

of LV(A) obtained by adding a new unary function symbol gf to LV(A). Moreover, let M be

the pp expansion S(V(A)[LF ]) of V(A) induced by

f and Lf . To conclude the proof, it only remains to show that M is a proper quasivariety.

First, M is a quasivariety by [4, Thm. 10.3(ii)]. We will prove that M is not a variety, i.e.,

it is not closed under H. Recall from Claim 2.5 that fA is a total function. Therefore, the

algebra A[LF ] is well defined. Moreover, the definition of A and the description of fA in

Claim 2.5 guarantee that A− {a4} is the universe of a subalgebra C of A[LF ]. Then from

the definition of M it follows that

C ∈ S(A[LF ]) ⊆ S(V(A)[LF ]) = M.

Now recall that

θ = idA−{a4} ∪ {⟨a6, 1⟩, ⟨1, a6⟩}.
As θ is a congruence of A − {a4} = C↾LV(A)

which, moreover, is compatible with the new

operation gCf = fA↾C by Claim 2.5, we obtain that θ is also a congruence of C. We will

prove that C/θ /∈ M. As C ∈ M, this will imply that M is not closed under H, as desired.

Suppose, with a view to contradiction, that C/θ ∈ M. By the definition of M there exists

D ∈ V(A) such that fD is total and C/θ ⩽ D[LF ]. Observe that

0 +A 1 = a6 and 3A1 = 1.

Since ⟨a6, 1⟩ ∈ θ and C↾LV(A)
= A− {a4} ⩽ A, this yields

0 +C/θ 1/θ = a6/θ = 1/θ = (3A1)/θ = 3C/θ1/θ.

Together with the definition of φ, this guarantees C/θ ⊨ φ(0/θ, 1/θ). Since φ is a pp formula

and C/θ ⩽ D[LF ], from [4, Prop. 8.1] it follows that D[LF ] ⊨ φ(0/θ, 1/θ). As φ is a formula

in LV(A) and D = D[LF ]↾LV(A)
, we obtain D ⊨ φ(0/θ, 1/θ). Since φ is the formula defining

f and g
D[LF ]
f = fD, this yields

g
D[LF ]
f (0/θ) = fD(0/θ) = 1/θ.

Therefore, g
C/θ
f (0/θ) = 1/θ because C/θ ⩽ D[LF ]. On the other hand, we will prove that

g
C/θ
f (0/θ) = gCf (0)/θ = g

A[LF ]
f (0)/θ = fA(0)/θ = a3/θ ̸= 1/θ,

thus obtaining the desired contradiction. The first equality above holds by the definition of a

quotient algebra, the second because C ⩽ A[LF ], the third by the definition of A[LF ], and

the fourth by Claim 2.5. Finally, the inequality at the end of the above display follows from

the definition of θ. ⊠

Remark 2.6. The proof of Theorem 2.1 yields that θ ∈ Con(C↾LV(A)
)− ConM(C), witnessing

that the pp expansion M of V(A) is not congruence preserving. ⊠
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3. A nonequational congruence preserving Beth companion

All the examples of Beth companions considered in [4] are induced by implicit operations

defined by conjunctions of equations, as opposed to arbitrary pp formulas. Such Beth compan-

ions have particularly nice properties. For example, they have an equational axiomatization

relative to the original class of algebras (see [4, Thm. 10.4]) and are congruence preserving

(see [4, Thm. 12.4]). One might therefore wonder whether every quasivariety K with a Beth

companion also has a Beth companion induced by implicit operations defined by conjunctions

of equations. This is the case, for instance, when K has the amalgamation property (see

[4, Thm. 12.7] and [4, Rem. 11.12(vi)]). Our aim is to show that the previous conjecture

fails, even when K is a variety with a congruence preserving Beth companion. Actually, a

counterexample can be found among some of the simplest varieties of Heyting algebras, as

we proceed to illustrate.

For every cardinal κ let Aκ be the unique Heyting algebra whose lattice reduct is obtained

by adding a new maximum 1 to the powerset lattice ⟨P(κ);∩,∪⟩. The implication of Aκ is

defined by the rule

a→ b =


1 if a ⩽ b;

b if a = 1;

(κ− a) ∪ b if a, b ∈ P(κ) and a ⩽̸ b.

As expected, Aκ and the powerset Boolean algebra P(κ) are closely related, in the sense that

P(κ) is isomorphic to the algebra obtained by quotienting Aκ under the congruence that

glues 1 with κ and leaves any other element untouched.

The varieties generated by Heyting algebras of the form Aκ form the chain

V(A0) ⊊ V(A1) ⊊ · · · ⊊ V(An) ⊊ · · · ⊊ V(Aω),

where V(Aω) = V(Aκ) for every infinite cardinal κ (see [9]).1

Definition 3.1. A pp expansion M of a class of algebras K is said to be

(i) equational when it is faithfully term equivalent relative to K to a pp expansion of K of

the form S(K[LF ]) with F ⊆ exteq(K);

(ii) an equational Beth companion of K when it is equational and a Beth companion of K.

The remainder of this section is devoted to showing that for n ⩾ 3 the variety V(An)

provides a counterexample to the conjecture that every congruence preserving Beth companion

of a variety is equational. More precisely, we will establish the next result.

Theorem 3.2. The following conditions hold for every κ ∈ N ∪ {ω}:
(i) V(Aκ) has a congruence preserving Beth companion;

(ii) V(Aκ) has an equational Beth companion if and only if κ ∈ {0, 1, 2, ω}.

1Although we shall not rely on this fact, we remark that these are precisely the nontrivial varieties of

Heyting algebras of depth ⩽ 2 (see also [4, Exa. 10.18]).
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It is known that V(A0),V(A1),V(A2), and V(Aω) have the strong epimorphism surjectivity

property (see [11, Thm. 8.1]). Consequently, they are their own Beth companions by [4,

Thm. 11.6]. When viewed as Beth companions of themselves, they are obviously equational

Beth companions. Moreover, recall that all Beth companions of a quasivariety K are faithfully

term equivalent relative to K (see [4, Thm. 11.7]). Consequently, if K has an equational

Beth companion, then all Beth companions of K are equational. Hence, in order to prove

Theorem 3.2, it will be enough to establish the following.

Theorem 3.3. For every n ⩾ 3 the variety V(An) has a congruence preserving Beth

companion that is not equational.

The proof of Theorem 3.3 proceeds through a series of observations. First, if an algebra A

has a lattice reduct, then V(A) is congruence distributive (see, e.g., [4, Thm. 7.2]). Therefore,

the following is an immediate consequence of a version of Jónsson’s Theorem for finitely

subdirectly irreducible algebras (see, e.g., [4, Thm. 2.12]) and [2, Thm. 5.6(2)].

Proposition 3.4. Let A be a finite algebra with a lattice reduct. Then V(A)fsi ⊆ HS(A).

As an application of Proposition 3.4, we obtain a transparent description of V(An)fsi.

Proposition 3.5. For every n ∈ N we have V(An)fsi = I(A0, . . . ,An) = IS(An).

Proof. By Proposition 3.4 we have V(An)fsi ⊆ HS(An). Moreover, by inspection it is

possible to check that (up to isomorphism) the finitely subdirectly irreducible members of

HS(An) are A0, . . . ,An. Together with V(An)fsi ⊆ HS(An) ⊆ V(An), this yields V(An)fsi =

I(A0, . . . ,An). Lastly, the equality I(A0, . . . ,An) = IS(An) is an immediate consequence of

the definition of A0, . . . ,An. ⊠

Corollary 3.6. For every n ∈ N we have V(An) = Q(An).

Proof. From the Subdirect Decomposition Theorem (see, e.g., [3, Thm. 8.6]) and Proposi-

tion 3.5 it follows that

V(An) = ISP(V(An)fsi) = ISPIS(An) ⊆ Q(An).

Since the inclusion Q(An) ⊆ V(An) always holds, we conclude that V(An) = Q(An). ⊠

We will make use of the following properties typical of the Heyting algebras of the form

Aκ for a cardinal κ. As all of them are immediate consequences of the definition of Aκ, their

proof is omitted. First, observe that Aκ has a second largest element (namely, κ) that we

denote by e. For every a, b ∈ Aκ we have

a ∨ b = 1 ⇐⇒ a = 1 or b = 1; (2)

0 < a ⩽ e ⇐⇒ a ∨ ¬a = e; (3)

a ∈ {0, e, 1} ⇐⇒ ¬¬a = 1; (4)

(a ̸= e or a = 0) ⇐⇒ ¬¬a = a. (5)
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We recall that an element a of an algebra B with a bounded lattice reduct is an atom when

a ̸= 0 and there exists no b ∈ B such that 0 < b < a. To simplify notation, we will make use

of the following shorthands for every algebra B with a bounded lattice reduct and a ∈ B:

at(B) = {b ∈ B : b is an atom of B};
atB(a) = {b ∈ at(B) : b ⩽ a}.

Moreover, for every B ⩽ An and a ∈ B the following holds:

if a ̸= 1 then a =
∨

atB(a); (6)

if b ∈ at(B), then either (b ⩽ a and b ⩽̸ ¬a) or (b ⩽̸ a and b ⩽ ¬a). (7)

We also rely on the following properties that hold in every Heyting algebra. First, for every

a1, . . . , am ∈ Aκ,
m∧
i=1

¬ai = 1 ⇐⇒ ai = 0 for every i ⩽ m. (8)

Second, for every a, b ∈ Aκ,

a ⩽ b ⇐⇒ a→ b = 1; (9)

a ⩽ b =⇒ ¬¬a ⩽ ¬¬b. (10)

Now, fix n ⩾ 3. For each positive m ⩽ n− 1 let sm,n and d denote the terms

sm,n =
n+1∨
i=1

zmi and d = x ∨ ¬x,

where x, zm1 , . . . , z
m
n+1 are variables. Then let ψm,n(x, y, z

m
1 , . . . , z

m
n+1) be the conjunction of

the following formulas:

n+1l

i=1

(d(x) ≈ d(zmi ));

d(x) ∨ ¬¬(x ∨ sm,n) ≈ y;(
(sm,n → x) ∧

m+1∧
i,j=1
i ̸=j

¬(zmi ∧zmj )
)
∨
(
(sm,n → ¬x) ∧

n+1∧
i,j=m+2

i ̸=j

¬(zmi ∧ zmj )
)
≈ 1.

For each positive k ⩽ n − 1 let γk,n(x, y, z
1
1 , . . . , z

1
n+1, . . . , z

k
1 , . . . , z

k
n+1, w1, . . . , wk) be the

formula (
y ≈

k∨
m=1

wm

)
⊓

kl

m=1

ψm,n(x,wm, z
m
1 , . . . , z

m
n+1)

and define

φk,n(x, y) = ∃z11 , . . . , z1n+1, . . . , z
k
1 , . . . , z

k
n+1, w1, . . . , wkγk,n.

Observe that φk,n(x, y) is a pp formula for every n ⩾ 3 and positive k ⩽ n− 1. We will prove

the following.
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Proposition 3.7. For every n ⩾ 3, positive k ⩽ n− 1, and a, b ∈ An,

An ⊨ φk,n(a, b) ⇐⇒ either (a ∈ {0, e, 1} and b = 1)

or (0 < a < e and b = 1 and the number of atoms below a is ⩽ k)

or (0 < a < e = b and the number of atoms below a is ⩾ k + 1).

Proof. We begin by proving the implication from left to right. Suppose that An ⊨ φk,n(a, b).

Then there exist c11, . . . , c
1
n+1, . . . , c

k
1, . . . , c

k
n+1, d1, . . . , dk ∈ An such that

b =
k∨

m=1

dm (11)

and for every positive m ⩽ k both

a ∨ ¬a = cm1 ∨ ¬cm1 = · · · = cmn+1 ∨ ¬cmn+1; (12)

dm = a ∨ ¬a ∨ ¬¬
(
a ∨

n+1∨
i=1

cmi

)
(13)

and

1 =
(( n+1∨

i=1

cmi → a
)
∧

m+1∧
i,j=1
i ̸=j

¬(cmi ∧ cmj )
)
∨
(( n+1∨

i=1

cmi → ¬a
)
∧

n+1∧
i,j=m+2

i ̸=j

¬(cmi ∧ cmj )
)
.

Together with (2), (8), and (9), the above display yields that for every m ⩽ k,

either
( n+1∨

i=1

cmi ⩽ a and cmi ∧ cmj = 0 for all distinct i, j with 1 ⩽ i, j ⩽ m+ 1
)

or
( n+1∨

i=1

cmi ⩽ ¬a and cmi ∧ cmj = 0 for all distinct i, j with m+ 2 ⩽ i, j ⩽ n+ 1
)
.

(14)

By the definition of An we have two cases: either a ∈ {0, e, 1} or 0 < a < e. First, suppose

that a ∈ {0, e, 1}. We need to prove that b = 1. To this end, observe that for every m ⩽ k,

¬¬a ⩽ ¬¬
(
a ∨

n+1∨
i=1

cmi

)
⩽ a ∨ ¬a ∨ ¬¬

(
a ∨

n+1∨
i=1

cmi

)
= dm,

where the first inequality holds by (10), the second is straightforward, and the last equality

by (13). Since a ∈ {0, e, 1}, we have ¬¬a = 1 by (4). Together with the above display, we

obtain dm = 1 for every m ⩽ k. By (11) we conclude that b = 1, as desired.

Next, we consider the case where 0 < a < e. In this case, a ∨ ¬a = e by (3). Therefore,

from (12) it follows that cmi ∨¬cmi = e for all positive m ⩽ k and i ⩽ n+1. By (3) this yields

0 < cmi for all positive m ⩽ k and i ⩽ n+ 1. (15)

We have two subcases: either the number of atoms below a is ⩽ k or ⩾ k + 1. First,

suppose that it is p ⩽ k. We need to prove that b = 1. As An has n atoms by definition, the
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number of atoms below ¬a is n− p by (7). From (14) in the case where m = p it follows that

either
( n+1∨

i=1

cpi ⩽ a and cpi ∧ c
p
j = 0 for all distinct i, j with 1 ⩽ i, j ⩽ p+ 1

)
or

( n+1∨
i=1

cpi ⩽ ¬a and cpi ∧ c
p
j = 0 for all distinct i, j with p+ 2 ⩽ i, j ⩽ n+ 1

)
.

The right hand side of the first line of the above display implies that the sets of atoms below

each of the cpi for 1 ⩽ i ⩽ p+1 must be pairwise disjoint. Moreover, observe that An is finite

and, therefore, each nonzero element is above an atom. Together with (15), this implies that

there is at least one atom below each cpi . Consequently, there must be at least p+ 1 distinct

atoms below the join of cp1, . . . , c
p
p+1. Together with the left hand side of the first line of the

above display, this implies that the number of atoms below a is ⩾ p+ 1, which is false by

assumption. Therefore,

n+1∨
i=1

cpi ⩽ ¬a and cpi ∧ c
p
j = 0 for all distinct i, j with p+ 2 ⩽ i, j ⩽ n+ 1.

As before, the right hand side of the above display and (15) imply that the number of distinct

atoms below the join of cpp+2, . . . , c
p
n+1 must be at least n− p. Observe that by the left hand

side of the above display and (6) it follows that every atom below the join of cpp+2, . . . , c
p
n+1

must be also below ¬a. As by assumption the number of atoms below ¬a is precisely n−p, the
set of atoms below ¬a must coincide with the set of atoms below cpp+2 ∨ · · · ∨ cpn+1. Therefore,

using (6) we obtain

¬a =
n+1∨
i=1

cpi .

Together with (13), this yields

a ∨ ¬a ∨ ¬¬(a ∨ ¬a) = a ∨ ¬a ∨ ¬¬(a ∨
n+1∨
i=1

cpi ) = dp.

As 0 < a < e by assumption, from (3) and (4) it follows that ¬¬(a ∨ ¬a) = ¬¬e = 1.

Therefore, the above display yields

1 = a ∨ ¬a ∨ 1 = a ∨ ¬a ∨ ¬¬(a ∨ ¬a) = dp.

By (11) we conclude that b = 1, as desired. It only remains to consider the case where the

number of atoms below a is ⩾ k + 1. We need to prove that b = e. As An has n atoms by

definition, the number of atoms below ¬a is ⩽ n− k − 1 by (7). Then consider a positive

m ⩽ k. Since n − k − 1 < n −m, the number of atoms below ¬a is < n −m. Since (15)

and the second line of (14) would imply that the number of atoms below ¬a is ⩾ n−m, we

conclude that the first line of (14) holds. Consequently,

n+1∨
i=1

cmi ⩽ a. (16)
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We will prove that the following holds:

e = a ∨ ¬a ⩽ a ∨ ¬a ∨ ¬¬
(
a ∨

n+1∨
i=1

cmi

)
⩽ a ∨ ¬a ∨ ¬¬(a ∨ a) = a ∨ ¬a = e.

The first and the last steps above hold by 0 < a ⩽ e and (3), the second is straightforward,

the third by (16) and (10), and the fourth by a = ¬¬a, which follows from a ̸= e and (5).

Together with (13), the above display yields dm = e. As this holds for every m ⩽ k, from

(11) it follows that b = e, as desired.

Next we prove the implication from right to left in the statement. Recall from the definition

of φk,n that it suffices to find cmi , dm for i ⩽ n+ 1 and m ⩽ k such that

An ⊨
(
b ≈

k∨
m=1

dm

)
⊓

kl

m=1

ψm,n(a, dm, c
m
1 , . . . , c

m
n+1). (17)

First, suppose that a ∈ {0, 1}. In this case, b = 1 by assumption. Choose cmi = 0 and dm = 1

for all i ⩽ n+ 1 and m ⩽ k. Clearly, we have

b = 1 =
k∨

m=1

dm.

From (2) it follows that for each m ⩽ k we have d(a) = 1 and, therefore,

d(a) = 1 = d(0) = d(cmi ) for each i ⩽ n+ 1 and

d(a) ∨ ¬¬
(
a ∨

n+1∨
i=1

cmi

)
= 1 ∨ ¬¬a = 1 = dm,

which proves the validity of the first two conjuncts of ψm,n. Moreover, it holds that(( n+1∨
i=1

cmi → a
)
∧

m+1∧
i,j=1
i ̸=j

¬(cmi ∧ cmj )
)
∨
(( n+1∨

i=1

cmi → ¬a
)
∧

n+1∧
i,j=m+2

i ̸=j

¬(cmi ∧ cmj )
)

=
(
(0 → a) ∧

m+1∧
i,j=1
i ̸=j

¬0
)
∨
(
(0 → ¬a) ∧

n+1∧
i,j=m+2

i ̸=j

¬0
)
= 1.

This establishes (17) for the case where a ∈ {0, 1}.
It only remains to consider the case where 0 < a < 1. Observe that choosing cmi ∈ at(An)

for all i ⩽ n+ 1 and m ⩽ k guarantees that

d(a) = e = d(cmi ) for all i ⩽ n+ 1 and m ⩽ k (18)

by (3). Moreover, (6) implies that, in order to guarantee that(( n+1∨
i=1

cmi → a
)
∧

m+1∧
i,j=1
i ̸=j

¬(cmi ∧ cmj )
)
∨
(( n+1∨

i=1

cmi → ¬a
)
∧

n+1∧
i,j=m+2

i ̸=j

¬(cmi ∧ cmj )
)
= 1,
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it suffices to choose cmi so that one of the following holds:

{cm1 , . . . , cmn+1} = atAn(a) and c
m
i ̸= cmj for all i, j ∈ {1, . . . ,m+ 1} with i ̸= j, (19)

{cm1 , . . . , cmn+1} = atAn(¬a) and cmi ̸= cmj for all i, j ∈ {m+ 2, . . . , n+ 1} with i ̸= j. (20)

We distinguish three cases. First, let a = e. Then b = 1 by assumption. Choose

cmi ∈ at(An) = atAn(e) for all i ⩽ n+ 1 and m ⩽ k such that {cm1 , . . . , cmn } are precisely the

n distinct atoms of An and let dm = 1 for each m ⩽ k. Then condition (19) is satisfied, since

m ⩽ k ⩽ n− 1, and thus m+ 1 ⩽ n. Therefore, to verify (17), it only remains to observe

that for each m ⩽ k we have

d(a) ∨ ¬¬
(
a ∨

n+1∨
i=1

cmi

)
= d(e) ∨ ¬¬(a ∨ e) = d(e) ∨ ¬¬e = 1 = dm,

which is true by (4) and a = e.

Next we consider the case where 0 < a < e and |atAn(a)| = p ⩽ k. Then b = 1 by

assumption. For all m < p and i ⩽ n + 1 consider cmi ∈ atAn(a) such that {cm1 , . . . , cmp } =

atAn(a) and dm = e. Moreover, for all p ⩽ m ⩽ k and i ⩽ n+ 1 consider cmi ∈ atAn(¬a) such
that {cmp+2, . . . , c

m
n+1} = atAn(¬a) and dm = 1. Then for m < p condition (19) is satisfied and

by (3), (4), (5), and 0 < a < e we have

d(a) ∨ ¬¬
(
a ∨

n+1∨
i=1

cmi

)
= d(a) ∨ ¬¬(a ∨ a) = e = dm.

On the other hand, for every m such that p ⩽ m ⩽ k condition (20) is satisfied. Moreover,

using (3), (4), and 0 < a < e, we obtain

d(a) ∨ ¬¬
(
a ∨

n+1∨
i=1

cmi

)
= d(a) ∨ ¬¬(a ∨ ¬a) = e ∨ ¬¬e = 1 = dm.

Since 1 =
∨

m⩽k dm (because dk = 1), this verifies that (17) holds.

It only remains to consider the case where 0 < a < e and |atAn(a)| = p ⩾ k + 1. In this

case, we have b = e by assumption. Then for all i ⩽ n+ 1 and m ⩽ k consider cmi ∈ atAn(a)

such that {cm1 , . . . , cmp } = atAn(a). Also choose dm = e for each m ⩽ k. Then (19) it satisfied

because m + 1 ⩽ k + 1 ⩽ p. Therefore, to conclude the proof of (17), it only remains to

observe that for each m ⩽ k we have

d(a) ∨ ¬¬
(
a ∨

n+1∨
i=1

cmi

)
= d(a) ∨ ¬¬(a ∨ a) = e = dm,

which holds by (3), (5), and 0 < a < e. This completes the proof. ⊠

As a consequence of Proposition 3.7, we get the following.
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Corollary 3.8. For every n ⩾ 3 and positive k ⩽ n− 1 the formula φk,n defines an implicit

operation fk,n ∈ extpp(V(An)) such that fAn
k,n is total and for every a ∈ An,

fAn
k,n (a) =


1 if a ∈ {0, e, 1};
1 if 0 < a < e and |atAn(a)| ⩽ k;

e if 0 < a < e and |atAn(a)| ⩾ k + 1.

Proof. In view of Proposition 3.7, the pp formula φk,n is functional inAn. By [4, Cor. 3.11] it is

also functional in Q(An). In view of Corollary 3.6, this means that φk,n is functional in V(An)

and, therefore, defines an implicit operation fk,n ∈ imppp(V(An)). From Proposition 3.7 it

follows that fAn
k,n is total and defined as in the statement. As fAn

k,n is total, we can apply [4,

Prop. 8.11(ii)] to the case where K = V(An) = Q(An) and M = {An}, obtaining that fk,n is

extendable. Thus, we conclude that fk,n ∈ extpp(V(An)). ⊠

Now, for every n ⩾ 3 let

Fn = {fk,n : k is positive and ⩽ n− 1}.

Observe that Fn ⊆ extpp(V(An)) by Corollary 3.8. Then consider an Fn-expansion

LFn = L ∪ {ℓf : f ∈ Fn}

of the language L of Heyting algebras and let

B(n) = S(V(An)[LFn ])

be the corresponding pp expansion of V(An). Our aim is to prove the following.

Theorem 3.9. Let n ⩾ 3. Then B(n) is a congruence preserving Beth companion of V(An).

To this end, recall from Corollary 3.8 that fAn is total for every f ∈ Fn, whence the

algebra

Bn = An[LFn ]

is defined. We begin with the following observation.

Proposition 3.10. For every n ⩾ 3 we have

B(n) = V(Bn) and B(n)fsi = IS(Bn).

Moreover, B(n) is an arithmetical variety.

Proof. We begin with the following observation.

Claim 3.11. We have V(Bn)fsi = IS(Bn).

Proof of the Claim. First, we show that

Con(C) = Con(C↾L) for every C ∈ IS(Bn). (21)

Clearly, it will be enough to prove the above display for an arbitraryC ∈ S(Bn). The inclusion

Con(C) ⊆ Con(C↾L) is straightforward. To prove the reverse one, consider θ ∈ Con(C↾L).

From C ⩽ Bn it follows that C↾L ⩽ (Bn)↾L = An. As C↾L and An are Heyting algebras

and the variety of Heyting algebras has the congruence extension property, there exists
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ϕ ∈ Con(An) such that θ = ϕ↾C . From [4, Prop. 12.13] and the definition of Bn it follows

that Con(An) = Con(Bn). Therefore, ϕ ∈ Con(Bn). Together with C ⩽ Bn, this yields

θ = ϕ↾C ∈ Con(C), as desired.

Next, we prove V(Bn)fsi = IS(Bn). By Proposition 3.4 we have V(Bn)fsi ⊆ HS(Bn).

Therefore, it suffices to show that the finitely subdirectly irreducible members of HS(Bn)

are precisely the members of IS(Bn). To this end, consider a finitely subdirectly irreducible

C ∈ HS(Bn). Then there exist D ⩽ Bn and θ ∈ Con(D) such that C ∼= D/θ. By [4,

Prop. 2.10] the congruence θ is meet irreducible in Con(D). By (21) it is also a meet

irreducible member of Con(D↾L). Since D↾L ⩽ An, one can check by inspection that the

only meet irreducible congruences of D↾L are idD and the congruences ϕ of D↾L with

exactly two equivalences, namely, 0/ϕ and 1/ϕ. If θ = idD, then C ∼= D and, therefore,

C ∈ IS(Bn) because D ⩽ Bn. On the other hand, if θ has exactly two equivalence classes

0/θ and 1/θ, then D/θ is isomorphic to the subalgebra of Bn with universe {0, 1}, whence
C ∈ IS(Bn). Finally, we show that every member of IS(Bn) is finitely subdirectly irreducible.

Let C ∈ IS(Bn). Then Con(C) = Con(C↾L) by (21). Since C ∈ IS(Bn), the definition of Bn

guarantees that C↾L ∈ IS(An). By inspection one can check that every member of IS(An)

is finitely subdirectly irreducible. Consequently, so is C↾L. By [4, Prop. 2.10] the congruence

idC is meet irreducible in Con(C↾L). As Con(C) = Con(C↾L), it is also meet irreducible in

Con(C). Hence, we conclude that C is finitely subdirectly irreducible by [4, Prop. 2.10]. ⊠

By Claim 3.11 and the Subdirect Decomposition Theorem (see, e.g., [7, Thm. 3.1.1]) we

obtain V(Bn) = ISP(V(Bn)fsi) = ISPIS(Bn). Consequently, V(Bn) ⊆ Q(Bn). As the reverse

inclusion always holds, we conclude that V(Bn) = Q(Bn).

Now, recall from Corollary 3.6 that V(An) = Q(An). As Bn = An[LFn ], this allows us

to apply [4, Thm. 10.5] to the case where K = V(An), N = {An}, and O = Q, obtaining

B(n) = S(V(An)[LFn ]) = Q(An[LFn ]) = Q(Bn). Since Q(Bn) = V(Bn), we obtain

B(n) = V(Bn). Therefore, B(n)fsi = V(Bn)fsi = IS(Bn). Lastly, since Bn has a Heyting

algebra reduct, the variety V(Bn) is arithmetical (see, e.g., [3, p. 80]). ⊠

An endomorphism of an algebra A is a homomorphism h : A → A. When h is an

isomorphism, we say that it is an automorphism of A. The sets of endomorphisms and of

automorphisms of A will be denoted, respectively, by end(A) and aut(A).

Similarly to the case of complete atomic Boolean algebras (cf. [6, Cor. 14.2]), one can easily

verify that every permutation of the atoms of An for some n ∈ N induces an automorphism

of An in the following way.

Proposition 3.12. Let n ∈ N and let σ : at(An) → at(An) be a permutation. Then the map

σ∗ : An → An defined for every a ∈ An as

σ∗(a) =

{
1 if a = 1;∨
σ[atAn(a)] if a ̸= 1

is an automorphism of An.

We will also make use of the next observation on the automorphisms of Bn.
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Proposition 3.13. The following conditions hold for every n ⩾ 3:

(i) for every A ⩽ Bn and b ∈ Bn − (A ∪ {e}) there exists h ∈ aut(Bn) such that b ≠ h(b)

and a = h(a) for every a ∈ A;

(ii) for every pair of embeddings g, h : A → Bn there exists i ∈ aut(Bn) such that g = i ◦ h.

Proof. (i): Consider A ⩽ Bn and b ∈ Bn − (A ∪ {e}). For every a ∈ at(A) let

Xa = atBn(a).

We will prove that {Xa : a ∈ at(A)} forms a partition of at(Bn). As A ⩽ Bn, for every

distinct a, c ∈ at(A) we have Xa ∩ Xc = ∅. Therefore, it only remains to show that for

every a ∈ at(Bn) there exists c ∈ at(A) such that a ∈ Xc, i.e., a ⩽ c. Consider a ∈ at(Bn).

We begin by showing that e ⩽
∨

at(A). If A = {0, 1}, we have 1 ∈ at(A) and, therefore,

e ⩽
∨

at(A) = 1. Then we consider the case where A ≠ {0, 1}. In this case, there exists a ∈ A

such that 0 < a < 1. Observe that ¬a ∈ A and atA(a) ∪ atA(¬a) ⊆ at(A). Consequently,

using (3) and (6), we obtain

e = a ∨ ¬a =
∨

atA(a) ∨
∨

atA(¬a) ⩽
∨

at(A).

Hence, we conclude that e ⩽
∨

at(A), as desired. Therefore, a ⩽
∨
at(A) because a ∈ at(Bn)

and every atom of Bn is below e. Since a ∈ at(Bn), from a ⩽
∨
at(A) it follows that a ⩽ c

for some c ∈ at(A). Hence, {Xa : a ∈ at(A)} forms a partition of at(Bn), as desired.

Now, observe that 1 ∈ A because A ⩽ Bn. Together with the assumption that b /∈ A∪{e},
this yields b < e. We will show that there exist a ∈ at(A) and c, d ∈ Xa such that c ⩽ b and

d ⩽̸ b. We have two cases: either A = {0, 1} or A ̸= {0, 1}. First, suppose that A = {0, 1}.
Then at(A) = {1} and X1 = at(Bn). Since b < e, there exist c, d ∈ at(Bn) = X1 such

that c ⩽ b and d ⩽̸ b, as desired. Next we consider the case where A ≠ {0, 1}. Recall

from the first part of the proof that {Xa : a ∈ at(A)} is a partition of at(Bn). Therefore,

atBn(b) ⊆ at(Bn) =
⋃
{Xa : a ∈ at(A)}. Suppose, with a view to contradiction, that for

every a ∈ at(A) we have Xa ⊆ atBn(b) or Xa ∩ atBn(b) = ∅. Then

atBn(b) =
⋃

{Xa : a ∈ at(A) and Xa ⊆ atBn(b)}. (22)

It follows that

b =
∨

atBn(b) =
∨⋃

{Xa : a ∈ at(A) and Xa ⊆ atBn(b)}

=
∨{∨

atBn(a) : a ∈ at(A) and Xa ⊆ atBn(b)
}

=
∨

{a ∈ at(A) : Xa ⊆ atBn(b)},

where the first equality holds by (6) and b ≠ 1 (the latter follows from b /∈ A), the second by

(22), the third by the definition of Xa, and the fourth follows from (6) because a ̸= 1 (the

latter holds because a ∈ at(A) and A ̸= {0, 1}). But this is a contradiction to the assumption

that b /∈ A. Therefore, there exists a ∈ at(A) such that ∅ ⊊ Xa∩atBn(b) ⊊ Xa. Consequently,

we can choose c ∈ Xa ∩ atBn(b) to obtain c ∈ Xa such that c ⩽ b and d ∈ Xa − atBn(b) such

that d ⩽̸ b. Thus, in both cases, there exist a ∈ at(A) and c, d ∈ Bn with

c, d ∈ Xa, c ∈ atBn(b), and d ⩽̸ b. (23)
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Then let σ : at(Bn) → at(Bn) be a permutation such that

σ[Xa] = Xa for every a ∈ at(A) and σ(c) = d. (24)

Notice that σ exists because c, d ∈ Xa by the first item of (23). Recall that Bn = An[LFn ].

Thus, we can consider the automorphism σ∗ : An → An defined in Proposition 3.12, which

by [4, Prop. 9.5] is also an automorphism of Bn. Therefore, in order to complete the proof, it

only remains to show that σ∗(b) ̸= b and σ∗(a) = a for every a ∈ A.

We begin by proving that

σ∗(b) =
∨

σ[atBn(b)] ⩾ σ(c) = d.

The first step in the above display holds by the definition of σ∗ and b < e < 1, the second by

the second item of (23), and the third by the right hand side of (24). Together with the third

item of (23), the above display yields σ∗(b) ̸= b.

Lastly, we will prove that σ∗(a) = a for every a ∈ A. Consider a ∈ A. If a = 1, then

σ∗(a) = a by the definition of σ∗. Then we consider the case where a ̸= 1. We will prove that

σ∗(a) = σ∗
( A∨

atA(a)
)
= σ∗

( Bn∨
atA(a)

)
=

Bn∨
σ∗[atA(a)] =

Bn∨
p∈atA(a)

( Bn∨
σ[atBn(p)]

)

=
Bn∨

p∈atA(a)

( Bn∨
atBn(p)

)
=

Bn∨
atA(a) =

A∨
atA(a) = a.

The above equalities are justified as follows: the first and the last hold by (6) and a ̸= 1, the

second and the second to last because A ⩽ Bn, the third because σ∗ is a homomorphism

of bounded lattices and, therefore, it preserves finite (possibly empty) joins, the fourth by

the definition of σ∗ and the fact that p ⩽ a < 1 implies p ̸= 1, the fifth by the left hand

side of (24), and the sixth because p ⩽ a < 1 implies p ⩽ e, whence (6) guarantees that

p =
∨Bn atBn(p). Thus, we conclude that σ∗(a) = a for every a ∈ A.

(ii): Consider a pair of embeddings g, h : A → Bn. As g and h are homomorphisms of

bounded lattices, we have g(0) = h(0) = 0 and g(1) = h(1) = 1. Therefore, if A = {0, 1}, we
have g = h and we are done letting i be the identity map on Bn.

Then we may assume that A ̸= {0, 1}, that is, {0, 1} ⊊ A. Since g, h : A → Bn are

embeddings, both g[A] and h[A] are subalgebras of Bn containing at least an element a

other than 0 and 1. Then they must also contain ¬a and, therefore, e = a∨¬a ∈ g[A]∩h[A]

by (3). As e is the second largest element of Bn and g and h are embeddings of lattices, we

obtain that A possesses a second largest element e∗ such that g(e∗) = h(e∗) = e. Moreover,

0 < e∗ < 1 because e∗ is the second largest element to A and A ̸= {0, 1}. If A = {0, e∗, 1},
we have g = h and we are done letting i be the identity map on Bn.

Then we may assume that A ̸= {0, e∗, 1}, that is, {0, e∗, 1} ⊊ A. We rely on the following

series of observations.

Claim 3.14. We have g[at(A)] ∪ h[at(A)] ⊆ {a ∈ Bn : 0 < a < e}.

Proof of the Claim. By symmetry it suffices to show that g[at(A)] ⊆ {a ∈ Bn : 0 < a < e}.
To this end, consider a ∈ at(A). Then a > 0. Moreover, since e∗ is the second largest
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element of A and A contains an element other than 0, e∗, and 1, from a ∈ at(A) it follows

that a < e∗. Therefore, 0 < a < e∗. Since g is a embedding of bounded lattices, we

obtain 0 = g(0) < g(a) < g(e∗). As we already established g(e∗) = e, we conclude that

0 < g(a) < e. ⊠

Claim 3.15. For every a ∈ at(A) we have |atBn(g(a))| = |atBn(h(a))|.

Proof of the Claim. Recall that An has n atoms by definition. As Bn is an expansion of

An, we obtain that Bn has n atoms as well. Then consider a ∈ Bn − {0, e, 1} and observe

that |atBn(a)| ⩽ n − 1 because |atBn(a)| = n by (6) would imply a ⩾ e. Recall that

LFn = L ∪ {ℓf : f ∈ Fn}. Therefore, from Corollary 3.8 and ℓBn
fk,n

= fAn
k,n it follows that for

every m ⩽ n− 1,

|atBn(a)| = m ⇐⇒ for every 0 < k ⩽ n− 1 we have ℓBn
fk,n

(a) =

{
1 if m ⩽ k;

e if m ⩾ k + 1.
(25)

To prove the statement of the claim, consider a ∈ at(A). By Claim 3.14 we have 0 <

g(a), h(a) < e. Then |atBn(g(a))| is a positive integer m ⩽ n− 1. In view of (25), for every

positive k ⩽ n− 1,

ℓBn
fk,n

(g(a)) =

{
1 if m ⩽ k;

e if m ⩾ k + 1.

Since g : A → Bn is an embedding such that g(e∗) = e and g(1) = 1, this yields that for

every positive k ⩽ n− 1,

ℓAfk,n(a) =

{
1 if m ⩽ k;

e∗ if m ⩾ k + 1.

As h : A → Bn is also an embedding such that h(e∗) = e and h(1) = 1, we obtain that for

every positive k ⩽ n− 1,

ℓBn
fk,n

(h(a)) =

{
1 if m ⩽ k;

e if m ⩾ k + 1.

Together with (25), this yields |atBn(h(a))| = m. ⊠

Claim 3.16. For every a, b ∈ at(A),

if a ̸= b, then atBn(g(a)) ∩ atBn(g(b)) = ∅ = atBn(h(a)) ∩ atBn(h(b)).

Proof of the Claim. Suppose that a ̸= b. By symmetry it suffices to show that atBn(g(a)) ∩
atBn(g(b)) = ∅. From a ̸= b and a, b ∈ at(A) it follows that a ∧A b = 0. Consequently,

g(a) ∧Bn g(b) = 0 because g : A → Bn is an embedding. Therefore, we conclude that

atBn(g(a)) ∩ atBn(g(b)) = ∅. ⊠

In view of Claims 3.15 and 3.16 there exists a permutation σ : at(Bn) → at(Bn) such that

σ[atBn(h(a))] = atBn(g(a)) for every a ∈ at(A). (26)

As Bn = An[LFn ], the map σ can also be viewed as a permutation of at(An). Consequently,

Proposition 3.12 yields an automorphism σ∗ : An → An, which by [4, Prop. 9.5] is also an
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automorphism of Bn. To conclude the proof, it only remains to show that g = σ∗ ◦ h, for in
this case we can take i = σ∗.

From the assumption that g, h, and σ∗ are homomorphisms of bounded lattices it follows

that g(1) = h(1) = σ∗(1) = 1, whence g(1) = σ∗(h(1)). Therefore, it suffices to show that

g(a) = σ∗(h(a)) for every a ∈ A− {1}. We will prove that for every a ∈ A− {1},

g(a) = g
( A∨

atA(a)
)
=

Bn∨
g[atA(a)] =

Bn∨
b∈atA(a)

Bn∨
atBn(g(b)) =

Bn∨
b∈atA(a)

Bn∨
σ[atBn(h(b))]

=
Bn∨

b∈atA(a)

σ∗(h(b)) = σ∗
(
h
( A∨

atA(a)
))

= σ∗(h(a)).

The above equalities are justified as follows. The first and the last hold by (6) and the

assumption that a ̸= 1, the second and the second to last because g, h, and σ∗ preserve

finite (possibly empty) joins because they are homomorphisms of bounded lattices, the third

by Claim 3.14 and (6), the fourth by (26), and the fifth follows from Claim 3.14 and the

definition of σ∗. Hence, we conclude that g = σ∗ ◦ h. ⊠

Finalizing the proof of the fact that B(n) is a congruence preserving Beth companion

of V(An) (Theorem 3.9) requires some further investigation of the variety B(n) and its

properties. While V(An) lacks the amalgamation property for every n ⩾ 3 (see [10, Thm. 2]),

this property holds in the pp expansion B(n) of V(An), as we proceed to illustrate. To this

end, we will employ the following result [5, Thm. 3.4]2 (see also [8, Thm. 3]), together with

the observation that B(n) has the congruence extension property for each n ⩾ 3.

Given a quasivariety K, let

K∗
rfsi = Krfsi ∪ {A ∈ K : A is trivial}.

Theorem 3.17. Let K be a quasivariety with the relative congruence extension property such

that Krfsi is closed under nontrivial subalgebras. Then K has the amalgamation property if

and only if K∗
rfsi has the amalgamation property.

To show that B(n) has the congruence extension property for each n ⩾ 3, we rely on the

following preservation result.

Proposition 3.18. Let M be a pp expansion of a quasivariety K. If K has the relative

congruence extension property, then so does M.

Proof. Suppose that K has the relative congruence extension property. Then consider

A ⩽ B ∈ M and θ ∈ ConM(A). We need to find some ϕ ∈ ConM(B) such that θ =

ϕ↾A. Since A ∈ S(M) = M, from [4, Rem. 12.2] it follows that ConM(A) ⊆ ConK(A↾LK
),

whence θ ∈ ConK(A↾LK
). Since M is a pp expansion of K, it is of the form S(K[LF ]).

Together with A ⩽ B ∈ M, this implies A ⩽ B ⩽ C for some C ∈ K[LF ]. Consequently,

A↾LK
⩽ C↾LK

∈ K. As θ ∈ ConK(A↾LK
) and K has the relative congruence extension

2Our formulation of Theorem 3.17 is slightly different from the one of [5, Thm. 3.4]. However, the difference

is insubstantial and amounts to the fact that in [5] the class Krfsi is defined as K∗
rfsi.
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property by assumption, there exists η ∈ ConK(C↾LK
) such that θ = η↾A. Recall from [4,

Prop. 12.13] that C ∈ K[LF ] implies ConM(C) = ConK(C↾LK
), whence η ∈ ConM(C). This

yields η↾B ∈ ConM(B) and θ = (η↾B)↾A because A ⩽ B ⩽ C and θ = η↾A. Hence, we are

done letting ϕ = η↾B. ⊠

Proposition 3.19. For every n ⩾ 3 the variety B(n) has the congruence extension property.

Proof. We recall that every variety of Heyting algebras has the congruence extension property.

In particular, V(An) has the congruence extension property for every n ⩾ 3. Therefore,

Proposition 3.18 yields that the pp expansion B(n) of V(An) has the congruence extension

property. ⊠

Proposition 3.20. For every n ⩾ 3 the variety B(n) has the amalgamation property.

Proof. Recall from Proposition 3.19 that the variety B(n) has the congruence extension

property. Moreover, B(n)fsi is closed under subalgebras by Proposition 3.10. Therefore,

in view of Theorem 3.17, in order to prove that B(n) has the amalgamation property, it

suffices to show that B(n)∗fsi has the amalgamation property. To this end, consider a pair of

embeddings h1 : A → B and h2 : A → C with A,B,C ∈ B(n)∗fsi. We need to find a pair of

embeddings g1 : B → D and g2 : C → D with D ∈ B(n)∗fsi such that g1 ◦ h1 = g2 ◦ h2.
We have two cases depending on whether A is trivial or nontrivial. First, suppose that A

is trivial. As B(n)fsi is closed under subalgebras by Proposition 3.10 and finitely subdirectly

irreducible algebras are nontrivial, we obtain that no member of B(n)fsi has a trivial subalgebra.

Since A embeds into B and C, this yields B,C /∈ B(n)fsi. Therefore, B and C are trivial

because B,C ∈ B(n)∗fsi. Consequently, A,B, and C are all trivial and the embeddings

h1 : A → B and h2 : A → C are isomorphisms. Therefore, we may assume that A = B = C

and that h1 and h2 are the identity map i on A. Hence, letting D = A and g1 = g2 = i, we

are done.

Next we consider the case where A is nontrivial. Since A embeds into B and C, we obtain

that B and C are also nontrivial. Together with B,C ∈ B(n)∗fsi, this yields B,C ∈ B(n)fsi.

Recall from Proposition 3.10 that B(n)fsi = IS(Bn), whence B,C ∈ IS(Bn). Therefore,

we may assume that B = C = Bn and that h1 and h2 are embeddings of A into Bn.

By Proposition 3.13(ii) there exists i ∈ aut(Bn) such that h1 = i ◦ h2. Let D = Bn,

g2 = i, and g1 the identity map on Bn. Clearly, g1, g2 : Bn → Bn are embeddings such that

g1 ◦ h1 = h1 = i ◦ h2 = g2 ◦ h2. ⊠

We are now ready to prove Theorem 3.9.

Proof. Recall that B(n) is a pp expansion of V(An). Moreover, since V(An) has the congruence

extension property, we can apply [4, Thm. 12.4(ii)], obtaining that B(n) is congruence

preserving. Hence, by [4, Thm. 11.6] it will be enough to prove that B(n) has the strong

epimorphism surjectivity property. Recall from Propositions 3.10 and 3.20 that B(n) is an

arithmetical variety with the amalgamation property. Therefore, in view of [4, Cor. 7.16], it

will be enough to show that every C ∈ B(n)fsi lacks proper B(n)-epic subalgebras. To this

end, consider A ⩽ C ∈ B(n)fsi with A ⩽ C proper. Then there exists b ∈ C − A. Moreover,

we may assume that C ⩽ Bn by Proposition 3.10, whence A ⩽ C ⩽ Bn.
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Let i be the identity map on Bn. As i ∈ end(Bn) and b ∈ C, to conclude the proof, it will

be enough to find some h ∈ end(Bn) such that h↾A = i↾A and h(b) ̸= i(b). For, by considering

the restrictions of h and i to C ⩽ Bn, we obtain that A ⩽ C is not B(n)-epic, as desired.

We have two cases: either e /∈ A or e ∈ A. First, suppose that e /∈ A. Since A ⩽ Bn, we

have A↾L ⩽ (Bn)↾L = An. Together with e /∈ A and (3), this yields A = {0, 1}. Then 0 < b

because b /∈ A. Let a ∈ atBn(b) and consider the map h : Bn → Bn defined for every c ∈ Bn

as

h(c) =

{
1 if a ⩽ c;

0 if a ⩽̸ c.

Since h ∈ end(An) and Bn = An[LFn ], from [4, Prop. 9.5] it follows that h ∈ end(Bn).

Moreover, a ∈ atBn(b) and the definition of h imply h(b) = 1. Then h(b) ̸= b because

b /∈ A = {0, 1}. Thus, h, i : Bn → Bn are homomorphisms such that h(b) ̸= b = i(b) and

h↾A = i↾A (the latter because A = {0, 1} and both h and i preserve the constants 0 and 1).

Lastly, we consider the case where e ∈ A. As A ⩽ C is proper and C ⩽ Bn, there exists

b ∈ C − (A ∪ {e}) ⊆ Bn − (A ∪ {e}). By Proposition 3.13(i) there also exists h ∈ aut(Bn)

such that b ̸= h(b) and a = h(a) for every a ∈ A. Thus, h, i : Bn → Bn are homomorphisms

such that h↾A = i↾A and h(b) ̸= b = i(b). ⊠

Lastly, we prove Theorem 3.3. Notice that this concludes the proof of Theorem 3.2.

Proof. As B(n) is a congruence preserving Beth companion of V(An) by Theorem 3.9, it

will be enough to show that B(n) is not equational. Suppose the contrary, with a view to

contradiction. Then let a be an atom of Bn and consider C = SgBn(a). The following is an

immediate consequence of the definition of C.

Claim 3.21. The universe of C is {0, a,¬a, e, 1}. Moreover, the Heyting algebra reduct of

C is isomorphic to A2 with minimum 0, maximum 1, second largest element e, and atoms a

and ¬a.

As a is an atom of Bn and An shares its bounded lattice reduct with Bn, the number of

atoms of An below a is 1. Since An has n ⩾ 3 atoms, from (7) it follows that the number of

atoms of An below ¬a is n − 1 ⩾ 3 − 1 ⩾ 2. Therefore, from Corollary 3.8 it follows that

ℓBn
f1,n

(a) = 1 and ℓBn
f1,n

(¬a) = e. As C ⩽ Bn, we obtain

ℓCf1,n(a) = 1 and ℓCf1,n(¬a) = e. (27)

Recall from the assumptions that B(n) is equational. Therefore, by [4, Rem. 11.12(vi)]

it is faithfully term equivalent relative to V(An) to a Beth companion M of V(An) induced

by implicit operations defined by conjunctions of equations. By [4, Thm. 10.4] the Beth

companionM is of the form V(An)[L∗
F ] with F ⊆ exteq(V(An)) and L∗

F an F -expansion of the

language L of Heyting algebras. Furthermore, recall that B(n) is a variety by Proposition 3.10.

Therefore, from [4, Rem. 11.12(v)] it follows that the class V(An)[L∗
F ] is also a variety.

Let τ and ρ be the maps witnessing the fact that B(n) and V(An)[L∗
F ] are faithfully term

equivalent relative to V(An). We may assume that for every D ∈ B(n),

τ(D) ∈ V(An)[L
∗
F ] and D↾L = τ(D)↾L. (28)
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As C ⩽ Bn ∈ B(n) and B(n) is a variety by Proposition 3.10, we have C ∈ B(n). Then

τ(C) ∈ V(An)[L∗
F ] by the left hand side of (28). Consequently, there exists D ∈ V(An) such

that D[L∗
F ] is defined and τ(C) = D[L∗

F ]. Together with the right hand side of (28), this

yields

C↾L = τ(C)↾L = D[L∗
F ]↾L = D.

In view of the above display, D is the Heyting algebra reduct of C and, therefore, is isomor-

phic to A2 with atoms a and ¬a by Claim 3.21. This allows us to apply Proposition 3.12 to

the permutation σ : at(D) → at(D) that switches a and ¬a, thus obtaining an automorphism

σ∗ : D → D with

σ∗(a) = ¬a and σ∗(1) = 1. (29)

Moreover, from τ(C) = D[L∗
F ] it follows that C = ρτ(C) = ρ(D[L∗

F ]). Together with (27),

this implies

ρ(ℓf1,n)
D[L∗

F ](a) = 1 and ρ(ℓf1,n)
D[L∗

F ](¬a) = e. (30)

Recall from [4, Prop. 10.22(ii)] that there exists g ∈ extpp(V(An)) such that

ρ(ℓf1,n)
D[LF∗ ] = gD. (31)

Together with the left hand side of (30), this yields gD(a) = 1. As the implicit operation g is

preserved by homomorphisms, we can apply the automorphism σ∗ of D in (29) to deduce

gD(¬a) = gD(σ∗(a)) = σ∗(gD(a)) = σ∗(1) = 1

and, therefore, ρ(ℓf1,n)
D[LF∗ ](¬(a)) = 1 by (31). Since 1 ̸= e, this contradicts the right hand

side of (30). Hence, we conclude that B(n) is a congruence preserving Beth companion of

V(An) that is not equational. ⊠
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