AN ADDENDUM TO “THE THEORY OF IMPLICIT OPERATIONS”
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Abstract

In this addendum to [4], we provide a pair of counterexamples relevant to the theory of implicit
operations. More precisely, we exhibit a pp expansion of a variety that fails to be a variety (although
it is a quasivariety). Furthermore, we construct a sequence of varieties possessing a nonequational

congruence preserving Beth companion.

1. INTRODUCTION

An n-ary partial function on a set X is a function f: Y — X for some Y C X™. In this
case, the set Y will be called the domain of f and will be denoted by dom(f). This notion
can be extended to classes of algebras as follows. An n-ary partial function on a class of
algebras K is a sequence (f4 : A € K), where f4 is an n-ary partial function on A for each
A € K. By a partial function on K we mean an n-ary partial function on K for some n € N.
When f is a partial function on K and A € K, we denote the A-component of f by f4.
Lastly, throughout this note by a formula we mean a first order formula.

Definition 1.1. A formula ¢(z1,...,2,,y) with n > 1 in the language of a class of algebras
K is said to be functional in K when for all A € K and a4, ..., a, € A there exists at most
one b € A such that A FE ¢(ay,...,a,,b).

In other words, ¢ is functional in K when
KE (p(z1,. .. 20, y) D@1, ... 20, 2)) = Y = 2.
In this case, ¢ induces an n-ary partial function 4 on each A € K with domain
dom(¢p?) = {{ay,...,a,) € A" : there exists b € A such that A F ¢(ay,...,a,,b)},

defined for every (ay, ..., a,) € dom(p4) as pA(ay,...,a,) = b, where b is the unique element
of A such that A F ¢(ay,...,a,,b). Consequently,

P = (p*: AeK)
is an n-ary partial function on K.

Definition 1.2. An n-ary partial function f on a class of algebras K is said to be

(i) defined by a formula ¢ when ¢ is functional in K and f = ¢X;
(ii) dmplicit when it is defined by some formula;
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iii) an operation o when for each homomorphism A: — wit ) € an
f K when f h h h h: A B h A B K and
{a,...,a,) € dom(f4) we have (h(a;),...,h(a,)) € dom(fB) and

h(fA(al, ap) = fB(R(ar),. .., hay));

(iv) an implicit operation of K when it is both implicit and an operation of K.

We denote the class of implicit operations of K by imp(K).
In elementary classes, implicit operations admit the following description (see [4, Thm. 3.9]).

Theorem 1.3. Let f be a partial function on an elementary class K. Then f is an implicit
operation of K if and only if it is defined by an existential positive formula.

Example 1.4 (Monoids). A typical example of an implicit operation of the variety K of
monoids arises from the idea of “taking inverses”. More precisely, for every A € K let f4 be
the unary partial function on A with

dom(f#) = {a € A : a is invertible}
defined for every a € dom(f4) as
f%(a) = the inverse of a.

Then (f4: A € K) is an implicit operation of K. X

Although concrete examples of implicit operations have long been known, the theory of
implicit operations received its first systematic treatment in [4]. In this note, we exhibit two
counterexamples relevant to the general theory of implicit operations. For this, we assume
familiarity with the concepts and notation of [4], as well as with the basics of the theory of
Heyting algebras (see, e.g., [1, Ch. IX]).

2. A VARIETY WITH A PP EXPANSION THAT IS A PROPER QUASIVARIETY

Consider the linearly ordered Heyting algebra Cg with universe
O<ar <ag<---<ag <1

We consider the algebra A obtained by endowing Cy with a constant for the element a5 as
well as with a pair of binary operations x + y and z * y and a pair of unary operations Oz
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and Ox defined for every a,b € A as follows:

ag ifa=0andbe {ag, 1};

a5 if a=0and b= agz;

as if (a=0and b ¢ {as,as,1}) or (a # 0 and b # ay);
a; ifa#0and b= aq;

1 if a = a4 and b = ag;
a*xb=
0 otherwise;

a+b=

{1 if a = as;
Oa =

0 otherwise;

1 ifae{0,a1};
a; if a € {ay,as2};
as if a € {as,as};

as ifa=ay.
Our aim is to prove the following.

Theorem 2.1. The variety V(A) has a pp expansion that is a proper quasivariety and is not
congruence preserving.

Proof. By [4, Thm. 12.9] every congruence preserving pp expansion of a variety is a variety.
So, it is sufficient to show that V(A) has a pp expansion that is a proper quasivariety. The
proof proceeds through a series of claims. First, observe that A — {a4} is the universe of a
subalgebra A — {a4} of A.

Claim 2.2. We have S(A) ={A, A —{a4}}.

Proof of the Claim. As A — {as} is a subalgebra of A, it suffices to prove the inclusion
S(A) € {A, A — {a4}}, which amounts to Sg®(#) = A ~ {a4}. First, observe that Sg”(0})

contains the interpretations 0, as, and 1 of the constants. As
O+1=uas, 1+0=as <ay=a;, and <az= as,
we conclude that Sg® () contains ay, as, as, and ag as well. Hence, Sg?(0) = A~ {ay}. K

Claim 2.3. Let C € V(A) be a finite nontrivial chain with second largest element a. Then
C is subdirectly irreducible with monolith Cg (a, 1).

Proof of the Claim. Tt suffices to show that Cg©(1,a) is the monolith of C. First, observe
that Cg®(1,a) € Con(C)— {id¢} because a < 1, where 1 is the maximum of C. Then consider
0 € Con(C) — {id¢}. As 0 # idg, there exist distinct b, ¢ € C such that (b,c) € 6. Since
b# ¢, we have b <> b =1 and b <> ¢ # 1, where x < y is a shorthand for (x — y) A (y — z).
As a is the second largest element of C|, this implies (b <+ b) Va =1 and (b <+ ¢) Va = a.
Together with (b, ¢) € 6, this yields (1,a) € 6, whence Cg®(1,a) C 6. X



4 LUCA CARAI, MIRTAM KURTZHALS, AND TOMMASO MORASCHINI

Observe that
0= idA—{a4} U {<a67 1>7 <17 a6>}
is a congruence of A — {ay}. Then let

B = (A—{a})/b.
Claim 2.4. We have V(A)y = I({A, A — {a4}, B}).

Proof of the Claim. Observe that all A, A — {as}, and B are finite nontrivial chains. There-
fore, the inclusion from right to left follows from Claim 2.3.

To prove the inclusion from left to right, observe that the variety V(A) is congruence
distributive because it has a lattice reduct (see, e.g., [4, Thm. 7.2]). By Jénsson’s Theorem
(see, e.g., [3, Thm. 6.8]) and [2, Thm. 5.6(2)] we have V(A)y C HS(A). Together with Claim
2.2, this yields

V(A)u C H{A, A — {ai}}).
Therefore, to conclude the proof, it will be enough to show that A is simple and that, up to
isomorphism, the only nontrivial homomorphic images of A — {a4} are A — {as} and B.

We begin by proving that A is simple, which means that Con(A) has exactly two elements.
In view of Claim 2.3, it suffices to show that Cg”(ag, 1) = A x A. Observe that (1,0) =
(ag % ag,ayx 1) € CgA(a6, 1). As the lattice reduct of A is a chain with extrema 0 and 1, this
guarantees that Cg”(ag, 1) = A x A.

Lastly, we prove that, up to isomorphism, the only nontrivial homomorphic images of
A —{a4} are A — {as} and B. By the definition of B it will be enough to show that for
every ¢ € Con(A — {a4}),

¢ ¢ {ida—{a,y,0} implies ¢ = (A — {as}) x (A — {as}).

Consider ¢ ¢ {ida_(q,3,0}. Observe that the definition of § and Claim 2.3 guarantee that
0 C ¢. Therefore, there exist ¢,d € A — {as} such that (c,d) € ¢ — 6. From the definition of
6 it follows that

c#d and {c,d} # {ag, 1}.

As ¢ # d and the lattice reduct of A — {a4} is a chain, we can assume that ¢ < d. From
¢ < d, the right hand side of the above display, and the fact that ag is the second largest
element of A — {a4} it follows that ¢ < ag, whence ¢ < as. Consequently,

(1,as) = (a5 V1,a5 V) = (az V (c = ¢),a; V (d — ¢)) € ¢
and, therefore, (1,0) = (Oas, O1) € ¢. As before, this yields ¢ = (A —{as}) x (A—{aq}). K
Consider the pp formula
o(z,y) = Fz(z +y = Oz).

Claim 2.5. The formula ¢(z,y) defines an extendable implicit operation f of V(A) such
that fA is a total function defined for every a € A as

Ay Ja ifaF#0;
d (a)_{ag if a=0.
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Proof of the Claim. We will show that ¢ defines an extendable implicit operation f of V(A).
The description of f4 in the statement will be an immediate consequence of our proof.

In view of [4, Cor. 8.14], it suffices to show that every member of V(A)g can be extended
to one of V(A) in which ¢(x,y) defines a total unary function. Recall from Claim 2.4
that V(A)y = [({A, A —{ay},B}). As A — {as} < A, we have V(A)y C IS({A, B}).
Consequently, it will be enough to show that ¢(z,y) defines a total unary function both on
A and B.

We begin with the case of A. We need to prove that for every a € A there exists a unique
b € A such that A F ¢(a,b). To this end, consider a € A. We have two cases: either a =0
or a # 0. First, suppose that a = 0. Since

CL+(I3=0+CL3:CL5:<>CL4,

the definition of ¢ guarantees that A F ¢(a,az). Therefore, it only remains to show that
b = as for every b € A such that A F ¢(a,b). Consider b € A such that A F ¢(a,b).
Then a + b = Oc for some ¢ € A. As a = 0, we have a + b € {as,as,as}. Together with
O[A] = {a1,a3,a5,1} and a+ b = Oc, this implies a + b = a5 From the definition of + it thus
follows that b = as, as desired.

Then we consider the case where a # 0. Since a + a; = a; = <aq, the definition of ¢
guarantees that A F ¢(a,a;). Therefore, it only remains to show that b = ay for every
b € A such that A F ¢p(a,b). Consider b € A such that A F p(a,b). Then a + b = c for
some ¢ € A. As a # 0, we have a + b € {a;,as}. Together with G[A] = {ay, a3, as, 1} and
a+ b = <c, this implies a + b = a; From the definition of + it thus follows that b = a;.

Next we consider the case of B = (A — {a4})/0. Since A — {a4} < A the definition of 6
guarantees that for every a,b € A — {a4},

BE p(a/0,b/0) <= there exists ¢ € A — {ay} such that
cither a +4 b = O4c or {a +2 b, 0%c} = {ag, 1}

(1)

Then let a € A — {ay}. As before, we have two cases: either a = 0 or a # 0. First, suppose
that a = 0. Since
a+2a6=0+4+%a5=a¢ and O%ag =1,
from (ag, 1) € 0 it follows that
a/0 4B ag/0 = ag/0 = 1/0 = OBag /0.

By the definition of ¢ this guarantees that B F ¢(a/0,as/0). Therefore, it only remains to
show that b/6 = ag/0 for every b € A—{a4} such that B F ¢(a/0,b/6). Consider b € A—{as}
such that B F ¢(a/0,b/6). Let ¢ € A—{a4} be the element given by the right hand side of (1).
As a =0, we have a +2 b € {ay, as, ag}. Together with Oc € O[A — {as}] = {a1, a3, 1}, the
right hand side of (1) ensures that a +4 b = ag. By the definition of + we obtain b € {ag, 1}.
As (ag, 1) € 0, we conclude that b/0 = ag/6, as desired. Then we consider the case where
a # 0. In this case, a +4 a; = a; = O4ay. Therefore, B F ¢(a/0,a,/0) by the definition of (.
It only remains to show that b/6 = a,/6 for every b € A — {a4} such that B F ¢(a/0,b/0).
Consider b € A — {a4} such that B F ¢(a/0,b/0). As before, let ¢ € A — {ays} be the element
given by right hand side of (1). Since a # 0, we have a +4 b € {a1,ay}. Together with
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Oc € O[A — {as}] = {ay,as,1} and the right hand side of (1), it follows that a +4 b = a;.
By the definition of + we obtain b = ay, whence b/0 = a;/6. X

By Claim 2.5 the formula ¢ defines some f € ext,,(V(A)). Consider the f-expansion £
of £y(a) obtained by adding a new unary function symbol gy to £Lv(4). Moreover, let M be
the pp expansion S(V(A)[Zx]) of V(A) induced by

f and £;. To conclude the proof, it only remains to show that M is a proper quasivariety.

First, M is a quasivariety by [4, Thm. 10.3(ii)]. We will prove that M is not a variety, i.e.,
it is not closed under H. Recall from Claim 2.5 that f4 is a total function. Therefore, the
algebra A[%z] is well defined. Moreover, the definition of A and the description of f4 in
Claim 2.5 guarantee that A — {a4} is the universe of a subalgebra C of A[£x]. Then from
the definition of M it follows that

C € S(A[%F]) CS(V(A)[£LF]) =M.
Now recall that
0 = ida—{a,y U {(as, 1), (1, a6)}.

As 0 is a congruence of A — {as} = C| which, moreover, is compatible with the new

Ly(a)
operation g]? = A, by Claim 2.5, we obtain that @ is also a congruence of C. We will

prove that C /0 ¢ M. As C' € M, this will imply that M is not closed under H, as desired.
Suppose, with a view to contradiction, that C' /0 € M. By the definition of M there exists
D € V(A) such that fP is total and C/0 < D[%#]. Observe that

0+41=as and O*1=1.
Since (ag, 1) € 6 and Cly,, =A- {ay} < A, this yields
04+Y7%1/6 = ag/0 =1/ = (OA1) /0 = C/%1/8.

Together with the definition of ¢, this guarantees C /0 E ©(0/60,1/6). Since ¢ is a pp formula
and C /0 < D[£L#], from [4, Prop. 8.1] it follows that D[Z£ x| E ©(0/6,1/0). As ¢ is a formula
in Lya) and D = D[£5| [y .a)> We Obtain D ©(0/6,1/0). Since ¢ is the formula defining

f and g]?[gf [ fP, this yields
g?¥70/0) = fP(0/6) = 1/6.

Therefore, g?/a(O/G) = 1/6 because C /0 < D[ZLz]. On the other hand, we will prove that

g¢7°(0/0) = ¢(0)/0 = g77(0) /6 = £2(0)/0 = a3 /0 # 1/9,

thus obtaining the desired contradiction. The first equality above holds by the definition of a
quotient algebra, the second because C' < A[£#], the third by the definition of A[£#], and
the fourth by Claim 2.5. Finally, the inequality at the end of the above display follows from
the definition of 6. X

Remark 2.6. The proof of Theorem 2.1 yields that 6 € CO”(CR%WA))
that the pp expansion M of V(A) is not congruence preserving. X

— Conu(C), witnessing
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3. A NONEQUATIONAL CONGRUENCE PRESERVING BETH COMPANION

All the examples of Beth companions considered in [4] are induced by implicit operations
defined by conjunctions of equations, as opposed to arbitrary pp formulas. Such Beth compan-
ions have particularly nice properties. For example, they have an equational axiomatization
relative to the original class of algebras (see [4, Thm. 10.4]) and are congruence preserving
(see [4, Thm. 12.4]). One might therefore wonder whether every quasivariety K with a Beth
companion also has a Beth companion induced by implicit operations defined by conjunctions
of equations. This is the case, for instance, when K has the amalgamation property (see
[4, Thm. 12.7] and [4, Rem. 11.12(vi)]). Our aim is to show that the previous conjecture
fails, even when K is a variety with a congruence preserving Beth companion. Actually, a
counterexample can be found among some of the simplest varieties of Heyting algebras, as
we proceed to illustrate.

For every cardinal x let A, be the unique Heyting algebra whose lattice reduct is obtained
by adding a new maximum 1 to the powerset lattice (P(x);N,U). The implication of A, is
defined by the rule

1 if a < b;
a—b=2<b ifa=1;
(k—a)Ub ifa,beP(k)and a £b.
As expected, A, and the powerset Boolean algebra P(k) are closely related, in the sense that
P(k) is isomorphic to the algebra obtained by quotienting A, under the congruence that

glues 1 with x and leaves any other element untouched.
The varieties generated by Heyting algebras of the form A, form the chain

V(Ag) S V(A1) G- CV(A,) & -+ CV(Ay),
where V(A,) = V(A,) for every infinite cardinal  (see [9]).!

Definition 3.1. A pp expansion M of a class of algebras K is said to be

(i) equational when it is faithfully term equivalent relative to K to a pp expansion of K of
the form S(K[Zx]) with F C ext.,(K);

(i) an equational Beth companion of K when it is equational and a Beth companion of K.

The remainder of this section is devoted to showing that for n > 3 the variety V(A,)
provides a counterexample to the conjecture that every congruence preserving Beth companion
of a variety is equational. More precisely, we will establish the next result.

Theorem 3.2. The following conditions hold for every k € NU{w}:
(i) V(A,) has a congruence preserving Beth companion,

(ii) V(A,) has an equational Beth companion if and only if k € {0,1,2, w}.

1Although we shall not rely on this fact, we remark that these are precisely the nontrivial varieties of
Heyting algebras of depth < 2 (see also [4, Exa. 10.18]).



8 LUCA CARAI, MIRTAM KURTZHALS, AND TOMMASO MORASCHINI

It is known that V(Ay), V(A;), V(As), and V(A, ) have the strong epimorphism surjectivity
property (see [11, Thm. 8.1]). Consequently, they are their own Beth companions by [4,
Thm. 11.6]. When viewed as Beth companions of themselves, they are obviously equational
Beth companions. Moreover, recall that all Beth companions of a quasivariety K are faithfully
term equivalent relative to K (see [4, Thm. 11.7]). Consequently, if K has an equational
Beth companion, then all Beth companions of K are equational. Hence, in order to prove
Theorem 3.2, it will be enough to establish the following.

Theorem 3.3. For every n > 3 the variety V(A,) has a congruence preserving Beth
companion that is not equational.

The proof of Theorem 3.3 proceeds through a series of observations. First, if an algebra A
has a lattice reduct, then V(A) is congruence distributive (see, e.g., [4, Thm. 7.2]). Therefore,
the following is an immediate consequence of a version of Jénsson’s Theorem for finitely
subdirectly irreducible algebras (see, e.g., [4, Thm. 2.12]) and [2, Thm. 5.6(2)].

Proposition 3.4. Let A be a finite algebra with a lattice reduct. Then V(A)gs C HS(A).
As an application of Proposition 3.4, we obtain a transparent description of V(A,, ).
Proposition 3.5. For every n € N we have V(A,)s = [(Ao, ..., A,) =IS(A,).

Proof. By Proposition 3.4 we have V(A,)rs C HS(A,). Moreover, by inspection it is
possible to check that (up to isomorphism) the finitely subdirectly irreducible members of
HS(A,) are Ay, ..., A,. Together with V(A, ) C HS(A,) C V(A,), this yields V(A,)py =
I(Ay,...,A,). Lastly, the equality I(Ay, ..., A,) =IS(A,) is an immediate consequence of
the definition of Ag, ..., A,. X

Corollary 3.6. For every n € N we have V(A,) = Q(A,).

Proof. From the Subdirect Decomposition Theorem (see, e.g., [3, Thm. 8.6]) and Proposi-
tion 3.5 it follows that

V(Ay) = ISP(V(An)rst) = ISPIS(A,) € Q(An).
Since the inclusion Q(A,) C V(A,) always holds, we conclude that V(A,) = Q(A4,). K

We will make use of the following properties typical of the Heyting algebras of the form
A, for a cardinal k. As all of them are immediate consequences of the definition of A, their
proof is omitted. First, observe that A, has a second largest element (namely, x) that we
denote by e. For every a,b € A, we have

aVb=1 < a=1orb=1;

(2)

0<a<e < aV-a=c¢ (3)
a€{0,el} < ——a=1; (4)
(5)

(a#eora=0) < —a=a.
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We recall that an element a of an algebra B with a bounded lattice reduct is an atom when
a # 0 and there exists no b € B such that 0 < b < a. To simplify notation, we will make use
of the following shorthands for every algebra B with a bounded lattice reduct and a € B:

at(B) = {b € B : b is an atom of B};
atg(a) ={b € at(B) : b < a}.

Moreover, for every B < A,, and a € B the following holds:

if a #1 thena:\/atB(a); (6)
if b € at(B), then either (b < a and b £ —a) or (b £ a and b < —a). (7)

We also rely on the following properties that hold in every Heyting algebra. First, for every
a1, ...,Qm € A,
/\ﬂaizl <= a; =0 for every i < m. (8)
i=1
Second, for every a,b € A,,

a = a—b=1; 9)

b
b

NN

Now, fix n > 3. For each positive m <n —1 let s,,, and d denote the terms

n+1
Smn = \/zzm and d=xV —z,
i=1
where z, 21", ..., 2", are variables. Then let ¥, ,(z,y, 2", ..., 2" ,) be the conjunction of
the following formulas:

n+1

i=1
d(z)V-=(xV Smn) = y;

m+1 n+1
((sm,n —x)A /\ ﬁ(zfl/\z;”» V ((smn — =) A /\ =(z" A z]m)> ~ 1.

i,j=1 t,j=m+2

1#] 1#]
For each positive k < n — 1 let yen(z,y, 21, ., 2000, 25, 28w, oo wy) be the
formula

k k
(y ~ \/ wm> M |_| Ui (T, Wi, 2775 200 1)
m=1 m=1

and define

o 1 k k
Crn (T, Y) = 320, o, Zngqy oo s 2 By s Wy - o WY

Observe that ¢y ,(z,y) is a pp formula for every n > 3 and positive k < n — 1. We will prove
the following.
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Proposition 3.7. For every n > 3, positive k <n—1, and a,b € A,,

A, E prnla,b) <= either (a € {0,e,1} and b=1)
or (0 <a<eandb=1 and the number of atoms below a is < k)

or (0 < a < e=b and the number of atoms below a is > k + 1).

Proof. We begin by proving the implication from left to right. Suppose that A, F ¢k.n(a,b).
Then there exist ¢f,...,cl q,...,cf, ...,k 1, dy,... dy € A, such that

b= \k/dm (11)

m=1
and for every positive m < k both
aV-oa=c'"V-acl'=---=c' Ve (12)
nt1
dm:a\/—'a\/—m<a\/\/c;n> (13)
i=1
and
n+1 m—+1 n+1 n+1
1= (<\/sz—>a> A /\ ﬁ(c;”/\c;ﬂ)) Y <<\/c§”—>ﬂa> A /\ ﬂ(c;”/\cgn))
i=1 i,j=1 i=1 i j=m-+2
i#] i#]

Together with (2), (8), and (9), the above display yields that for every m < k,

n+1
either ( \/ ¢;' <aand ¢ Acj* =0 for all distinct 7,7 with 1 <4,7 <m + 1)
i=1

n+1 (14)

or (\/cgngw andc?/\c?”‘zOfor all distinct i,jwithm+2<i,j<n+1>.
i=1

By the definition of A,, we have two cases: either a € {0,e,1} or 0 < a < e. First, suppose
that a € {0, e, 1}. We need to prove that b = 1. To this end, observe that for every m < k,

nt1 nt1
—a < —|—|<a\/ \/cZ”) < a\/—|a\/—m<a\/ \/c:n> = dp,
i=1 =1

where the first inequality holds by (10), the second is straightforward, and the last equality
by (13). Since a € {0,¢,1}, we have =—a = 1 by (4). Together with the above display, we
obtain d,, = 1 for every m < k. By (11) we conclude that b = 1, as desired.

Next, we consider the case where 0 < a < e. In this case, a V —a = e by (3). Therefore,
from (12) it follows that ¢}* V =¢f* = e for all positive m < k and i < n+ 1. By (3) this yields

0 < ¢ for all positive m < k and i <n+ 1. (15)

We have two subcases: either the number of atoms below a is < k or > k 4+ 1. First,
suppose that it is p < k. We need to prove that b = 1. As A, has n atoms by definition, the
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number of atoms below —a is n —p by (7). From (14) in the case where m = p it follows that

n+1
either (\/cf <aand ¢ A =0 for all distinct i,7 with 1 <4,j <p+ 1)
i=1

n+1
or (\/cfé—uandcf/\c?zOforalldistincti,jwithp—i—Zéi,j<n+1>.
i=1

The right hand side of the first line of the above display implies that the sets of atoms below
each of the ¢ for 1 < i < p+ 1 must be pairwise disjoint. Moreover, observe that A, is finite
and, therefore, each nonzero element is above an atom. Together with (15), this implies that
there is at least one atom below each . Consequently, there must be at least p 4+ 1 distinct
atoms below the join of ¢, ..., ¢ ;. Together with the left hand side of the first line of the
above display, this implies that the number of atoms below a is > p 4+ 1, which is false by
assumption. Therefore,

n+1

\/cfg —a and ¢ A c¢f =0 for all distinct 4, j with p+2 <4,j <n+ 1.

i=1

As before, the right hand side of the above display and (15) imply that the number of distinct
atoms below the join of ¢} ,,,..., ¢, must be at least n — p. Observe that by the left hand
side of the above display and (6) it follows that every atom below the join of ¢} 5,..., ¢,
must be also below —a. As by assumption the number of atoms below —a is precisely n—p, the
set of atoms below —a must coincide with the set of atoms below ¢,V ---V ¢} ;. Therefore,
using (6) we obtain

Together with (13), this yields
n+1
aV-aV--(aV-a)=aV-aV--(aV \/cf) = d,.
i=1
As 0 < a < e by assumption, from (3) and (4) it follows that =—(a V —a) = ——e = 1.
Therefore, the above display yields

l=aV-aVl=aV-aV--(aVa)=d,.

By (11) we conclude that b = 1, as desired. It only remains to consider the case where the
number of atoms below a is > k£ + 1. We need to prove that b = e. As A, has n atoms by
definition, the number of atoms below —a is < n —k — 1 by (7). Then consider a positive
m < k. Since n — k — 1 < n —m, the number of atoms below —a is < n —m. Since (15)
and the second line of (14) would imply that the number of atoms below —a is > n —m, we
conclude that the first line of (14) holds. Consequently,

n+1

\ & <a (16)
i=1
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We will prove that the following holds:

n+1
e:a\/ﬂaga\/ﬁa\/ﬁﬂ(a\/\/cgn) <aV-aV--(aVa)=aV-a=e.
i=1

The first and the last steps above hold by 0 < a < e and (3), the second is straightforward,
the third by (16) and (10), and the fourth by a = =—a, which follows from a # e and (5).
Together with (13), the above display yields d,,, = e. As this holds for every m < k, from
(11) it follows that b = e, as desired.

Next we prove the implication from right to left in the statement. Recall from the definition
of ¢y, that it suffices to find ¢, d,, for « < n + 1 and m < k such that

k k
A, E (b ~ m\ll dm> M n|;|1 Yo (@, dyy € ™). (17)

First, suppose that a € {0,1}. In this case, b = 1 by assumption. Choose ¢" =0 and d,,, = 1
for all i <n+ 1 and m < k. Clearly, we have

k
bzlz\/dm.

m=1
From (2) it follows that for each m < k we have d(a) = 1 and, therefore,
d(a) =1=d(0) =d(c") for each i <n+ 1 and
n+1

d(&)\/‘\‘\(@\/\/CT) =1V-ma=1=d,,

=1

which proves the validity of the first two conjuncts of 1., ,,. Moreover, it holds that

n+1 m+1 n+1 n+1
((\/c:” —>a> A /\ —(c?‘/\c?)) v ((\/cl” — —-a) A /\ —l(c;"/\cgn)>
i=1 = i=1 i j=m+2
] i#]
m+1 n+1
:<(O—>a)/\/\ﬂ0>\/((0—>ﬂa)/\ A —n0>:1.
ij=1 i j=m+2
i# i#

This establishes (17) for the case where a € {0, 1}.

It only remains to consider the case where 0 < a < 1. Observe that choosing " € at(A,,)
for all 7 <n+ 1 and m < k guarantees that

dla)=e=d(c") foralli<n+1and m <k (18)

by (3). Moreover, (6) implies that, in order to guarantee that

n+1 m—+1 n+1 n+1

(( czm—>a> /\'/'\ —(c?"/\c}”)) Y <<\/CT—>ﬂa> A /\ ﬂ(c;-“/\cgn)> =1,

i=1 7,7=1 i,j=m-+2
i#] 1#]
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it suffices to choose ¢ so that one of the following holds:

{el', .. e} =ata,(a) and ¢f" # ¢} for all 4,5 € {1,...,m + 1} with i # j, (19)
{el', .. e} =ata,(ma) and ¢f" # ¢ for all 4,5 € {m +2,...,n+ 1} with i # j. (20)

We distinguish three cases. First, let a = e. Then b = 1 by assumption. Choose
" € at(A,) = ata,(e) for all i <n+ 1 and m < k such that {c]",..., "} are precisely the
n distinct atoms of A,, and let d,,, = 1 for each m < k. Then condltlon (19) is satisfied, since
m < k <n—1, and thus m + 1 < n. Therefore, to verify (17), it only remains to observe
that for each m < k we have

d(a) vV —m(a Y \/ c;”> =d(e)V-—(aVe)=d(e)V-e=1=dpy,,

which is true by (4) and a = e.
Next we consider the case where 0 < a < e and |ata,(a)] = p < k. Then b = 1 by

assumption. For all m < p and i < n + 1 consider ¢j* € ata,(a) such that {c{*,..., '} =
ata, (a) and d,,, = e. Moreover, for all p<m < kandi<n+1 consider ¢[" € ata, (—a) such
that {c]'\o, ..., } = ata,(—a) and d,,, = 1. Then for m < p condition (19) is satisfied and

by (3), (4), (5), and 0 < a < e we have

n+1

d(a)\/ﬁﬁ<a\/\/ )_d( )V (@ Va)=e=dp.

=1

On the other hand, for every m such that p < m < k condition (20) is satisfied. Moreover,
using (3), (4), and 0 < a < e, we obtain

d(a)\/ﬁ—'(avn\Jr/1 )-d( YV a=(aV-a)=eV-me=1=d,.

=1

Since 1 =V, dmn (because dj, = 1), this verifies that (17) holds.

It only remains to consider the case where 0 < a < e and |ata, (a)] =p > k+ 1. In this
case, we have b = e by assumption. Then for all i < n+ 1 and m < k consider ¢* € ata, (a)
such that {cf",..., '} = ata,(a). Also choose d,, = e for each m < k. Then (19) it satisfied
because m + 1 < k + 1 < p. Therefore, to conclude the proof of (17), it only remains to
observe that for each m < k we have

n+1

d(a)vﬂﬂ(a\/\/ ) d(a)V ——(aVa) = e = dp,

=1

which holds by (3), (5), and 0 < a < e. This completes the proof. X

As a consequence of Proposition 3.7, we get the following.
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Corollary 3.8. For every n > 3 and positive k < n — 1 the formula ., defines an implicit
operation fi, € ext,,(V(A,)) such that f,;‘; is total and for every a € A,
1 ifae{0,e1};
,f,ﬁj(a)z 1 if0<a<eand|ata,(a)| <k;
e if0<a<eandlata,(a)l >k

Proof. In view of Proposition 3.7, the pp formula ¢y, ,, is functional in A,,. By [4, Cor. 3.11] it is
also functional in Q(A,,). In view of Corollary 3.6, this means that ¢y, is functional in V(A,,)
and, therefore, defines an implicit operation fj , € imppp(V(An)). From Proposition 3.7 it
follows that f,f” is total and defined as in the statement. As f,f" is total, we can apply [4,

n n

Prop. 8.11(ii)] to the case where K = V(A,) = Q(A,) and M = {A, }, obtaining that f, is
extendable. Thus, we conclude that f,, € ext,,(V(A,)). X

Now, for every n > 3 let
Fun = {frn : k is positive and < n — 1}.
Observe that F,, C ext,,(V(A,)) by Corollary 3.8. Then consider an F,-expansion
Lr, =L U{l;: feF,}
of the language £ of Heyting algebras and let
B(n) = S(V(A.)[£F.])
be the corresponding pp expansion of V(A, ). Our aim is to prove the following.

Theorem 3.9. Let n > 3. Then B(n) is a congruence preserving Beth companion of V(A,,).

To this end, recall from Corollary 3.8 that f4» is total for every f € F,, whence the

algebra
B,=A,[%7,]
is defined. We begin with the following observation.

Proposition 3.10. For every n > 3 we have
B(n) =V(B,) and B(n)w; = IS(B,).
Moreover, B(n) is an arithmetical variety.
Proof. We begin with the following observation.
Claim 3.11. We have V(B,,)ws = IS(B,,).
Proof of the Claim. First, we show that
Con(C) = Con(C'[y) for every C € IS(B,,). (21)

Clearly, it will be enough to prove the above display for an arbitrary C' € S(B,,). The inclusion
Con(C) C Con(C') is straightforward. To prove the reverse one, consider § € Con(C').
From C < B, it follows that C|, < (B,)l¢ = A,. As C[, and A, are Heyting algebras
and the variety of Heyting algebras has the congruence extension property, there exists
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¢ € Con(A,,) such that § = ¢[,. From [4, Prop. 12.13] and the definition of B, it follows
that Con(A,) = Con(B,). Therefore, ¢ € Con(B,,). Together with C < B, this yields
0 = ¢l € Con(C), as desired.

Next, we prove V(B,)rss = IS(B,). By Proposition 3.4 we have V(B, )y C HS(B,).
Therefore, it suffices to show that the finitely subdirectly irreducible members of HS(B,,)
are precisely the members of IS(B,,). To this end, consider a finitely subdirectly irreducible
C € HS(B,). Then there exist D < B,, and 6 € Con(D) such that C = D/f. By [4,
Prop. 2.10] the congruence 6 is meet irreducible in Con(D). By (21) it is also a meet
irreducible member of Con(D7/y). Since D[, < A,, one can check by inspection that the
only meet irreducible congruences of D/, are idp and the congruences ¢ of D[, with
exactly two equivalences, namely, 0/¢ and 1/¢. If § = idp, then C = D and, therefore,
C € IS(B,) because D < B,,. On the other hand, if # has exactly two equivalence classes
0/6 and 1/6, then D/6 is isomorphic to the subalgebra of B,, with universe {0, 1}, whence
C € IS(B,). Finally, we show that every member of IS(B,,) is finitely subdirectly irreducible.
Let C € IS(B,,). Then Con(C) = Con(C'[¢) by (21). Since C' € IS(B,,), the definition of B,,
guarantees that C|, € IS(A,,). By inspection one can check that every member of IS(A,,)
is finitely subdirectly irreducible. Consequently, so is C'l4. By [4, Prop. 2.10] the congruence
id¢ is meet irreducible in Con(C'[4). As Con(C') = Con(C'[), it is also meet irreducible in
Con(C). Hence, we conclude that C is finitely subdirectly irreducible by [4, Prop. 2.10]. X

By Claim 3.11 and the Subdirect Decomposition Theorem (see, e.g., [7, Thm. 3.1.1]) we
obtain V(B,,) = ISP(V(B,,)rs) = ISPIS(B,,). Consequently, V(B,,) C Q(B,,). As the reverse
inclusion always holds, we conclude that V(B,,) = Q(B,,).

Now, recall from Corollary 3.6 that V(A,) = Q(A,). As B, = A,[£#,], this allows us
to apply [4, Thm. 10.5] to the case where K = V(A,), N = {A,}, and O = Q, obtaining
B(n) = S(V(A,)[%£]) = Q(A,[%%,]) = Q(B,). Since Q(B,) = V(B,), we obtain
B(n) = V(B,,). Therefore, B(n)py = V(B,)rs = IS(B,,). Lastly, since B, has a Heyting
algebra reduct, the variety V(B,,) is arithmetical (see, e.g., [3, p. 80]). X

An endomorphism of an algebra A is a homomorphism h: A — A. When h is an
isomorphism, we say that it is an automorphism of A. The sets of endomorphisms and of
automorphisms of A will be denoted, respectively, by end(A) and aut(A).

Similarly to the case of complete atomic Boolean algebras (cf. [6, Cor. 14.2]), one can easily
verify that every permutation of the atoms of A,, for some n € N induces an automorphism
of A, in the following way.

Proposition 3.12. Let n € N and let o: at(A,) — at(A,) be a permutation. Then the map
oc*: A, = A, defined for every a € A, as

G*(a)_{1 ifa=1:
|\ Volata,(@)] ifa#1

is an automorphism of A,,.

We will also make use of the next observation on the automorphisms of B,,.



16 LUCA CARAI, MIRTIAM KURTZHALS, AND TOMMASO MORASCHINI

Proposition 3.13. The following conditions hold for every n > 3:

(i) for every A < B, and b € B, — (AU {e}) there exists h € aut(B,,) such that b # h(b)
and a = h(a) for every a € A;
(ii) for every pair of embeddings g,h: A — B, there exists i € aut(B,,) such that g =i o h.

Proof. (i): Consider A < B,, and b € B,, — (AU {e}). For every a € at(A) let
Xa = atBn(a).

We will prove that {X, : a € at(A)} forms a partition of at(B,). As A < B,, for every
distinct a,c € at(A) we have X, N X, = (). Therefore, it only remains to show that for
every a € at(B,,) there exists ¢ € at(A) such that a € X,, i.e., a < ¢. Consider a € at(B,,).
We begin by showing that e < \/at(A). If A = {0,1}, we have 1 € at(A) and, therefore,
e <\ at(A) = 1. Then we consider the case where A # {0, 1}. In this case, there exists a € A
such that 0 < a < 1. Observe that —a € A and ata(a) Uata(—a) C at(A). Consequently,
using (3) and (6), we obtain

e=aV-a=\/ata(a)V\/ata(-a) < \/at(A).

Hence, we conclude that e < \/at(A), as desired. Therefore, a < \/ at(A) because a € at(B,
and every atom of B, is below e. Since a € at(B,), from a < \/at(A) it follows that a < ¢
for some ¢ € at(A). Hence, {X, : a € at(A)} forms a partition of at(B,,), as desired.

Now, observe that 1 € A because A < B,,. Together with the assumption that b ¢ AU{e},
this yields b < e. We will show that there exist a € at(A) and ¢,d € X, such that ¢ < b and
d & b. We have two cases: either A = {0,1} or A # {0,1}. First, suppose that A = {0,1}.
Then at(A) = {1} and X; = at(B,). Since b < e, there exist ¢,d € at(B,) = X; such
that ¢ < b and d £ b, as desired. Next we consider the case where A # {0,1}. Recall
from the first part of the proof that {X, : a € at(A)} is a partition of at(B,,). Therefore,
atg, (b) C at(B,) = U{X. : a € at(A)}. Suppose, with a view to contradiction, that for
every a € at(A) we have X, C atg, (b) or X, Natg, (b) = 0. Then

atp, (b) = J{X, : a € at(A) and X, C atp, (b)}. (22)
It follows that
b= \/atBn(b) = \/U{Xa ca € at(A) and X, C atp, (b)}
— \/ {\/ atg,(a):a € at(A) and X, C atBn(b)}

=\{acat(A): X, Catg, (b)},

where the first equality holds by (6) and b # 1 (the latter follows from b ¢ A), the second by
(22), the third by the definition of X,, and the fourth follows from (6) because a # 1 (the
latter holds because a € at(A) and A # {0,1}). But this is a contradiction to the assumption
that b ¢ A. Therefore, there exists a € at(A) such that ) € X,Natp, (b)) C X,. Consequently,
we can choose ¢ € X, Natp, (b) to obtain ¢ € X, such that ¢ < b and d € X, — atp, (b) such
that d £ b. Thus, in both cases, there exist a € at(A) and ¢,d € B,, with

c,d € X, c € atg,(b), and d £ 0. (23)
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Then let o: at(B,,) — at(B,,) be a permutation such that
o[X,] = X, for every a € at(A) and o(c) = d. (24)

Notice that o exists because ¢,d € X, by the first item of (23). Recall that B,, = A,[%x%,].
Thus, we can consider the automorphism ¢*: A,, — A,, defined in Proposition 3.12, which
by [4, Prop. 9.5] is also an automorphism of B,,. Therefore, in order to complete the proof, it
only remains to show that o*(b) # b and o*(a) = a for every a € A.

We begin by proving that

o*(b) = \/ olatp, (b)] = o(c) = d.
The first step in the above display holds by the definition of ¢* and b < e < 1, the second by
the second item of (23), and the third by the right hand side of (24). Together with the third
item of (23), the above display yields o*(b) # b.
Lastly, we will prove that c*(a) = a for every a € A. Consider a € A. If a = 1, then
0*(a) = a by the definition of 0*. Then we consider the case where a # 1. We will prove that

o*(a) = U*(OatA(a)> = a*(\B/natA(a)> = \Bio*[atA(a)] = ]\37 (1\370[at3n(p)]>
peata(a)
- f/ (1\37at3n(p)> - \BfatA(a) - OatA(a) — a.
pEata(a)

The above equalities are justified as follows: the first and the last hold by (6) and a # 1, the
second and the second to last because A < B,,, the third because ¢* is a homomorphism
of bounded lattices and, therefore, it preserves finite (possibly empty) joins, the fourth by
the definition of ¢* and the fact that p < a < 1 implies p # 1, the fifth by the left hand
side of (24), and the sixth because p < a < 1 implies p < e, whence (6) guarantees that
p=\P"atg, (p). Thus, we conclude that o*(a) = a for every a € A.

(ii): Consider a pair of embeddings g,h: A — B,. As g and h are homomorphisms of
bounded lattices, we have g(0) = h(0) = 0 and ¢g(1) = h(1) = 1. Therefore, if A = {0,1}, we
have g = h and we are done letting ¢ be the identity map on B,,.

Then we may assume that A # {0,1}, that is, {0,1} € A. Since g,h: A — B, are
embeddings, both g[A] and h[A] are subalgebras of B,, containing at least an element a
other than 0 and 1. Then they must also contain —a and, therefore, e = aV —a € g[A] N h[A]
by (3). As e is the second largest element of B,, and g and h are embeddings of lattices, we
obtain that A possesses a second largest element e* such that g(e*) = h(e*) = e. Moreover,
0 < e* < 1 because e* is the second largest element to A and A # {0,1}. If A= {0,e*, 1},
we have g = h and we are done letting ¢ be the identity map on B,,.

Then we may assume that A # {0,e*, 1}, that is, {0,e*,1} C A. We rely on the following
series of observations.

Claim 3.14. We have glat(A)] U hlat(A)] C {a € B, : 0 <a < e}.

Proof of the Claim. By symmetry it suffices to show that glat(A)] C {a € B, : 0 < a < e}.
To this end, consider a € at(A). Then a > 0. Moreover, since e* is the second largest
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element of A and A contains an element other than 0, e*, and 1, from a € at(A) it follows
that a < e*. Therefore, 0 < a < e*. Since g is a embedding of bounded lattices, we
obtain 0 = g(0) < g(a) < g(e*). As we already established g(e*) = e, we conclude that
0<g(a) <e. X

Claim 3.15. For every a € at(A) we have |atg, (g(a))| = |ats, (h(a))].

Proof of the Claim. Recall that A, has n atoms by definition. As B, is an expansion of
A,,, we obtain that B, has n atoms as well. Then consider a € B,, — {0,¢,1} and observe
that |atp,(a)] < n — 1 because |atg,(a)] = n by (6) would imply a > e. Recall that
Lr, =L U{l;: feF,}. Therefore, from Corollary 3.8 and éﬁfn = fin it follows that for
every m <n — 1,

1 ifm<LE;
latp, (a)| = m <= for every 0 < k < n — 1 we have 6}3" (a) = s (25)
Fom e ifm>=>k+1.

To prove the statement of the claim, consider a € at(A). By Claim 3.14 we have 0 <
g(a),h(a) < e. Then |atg,(g(a))| is a positive integer m < n — 1. In view of (25), for every
positive k <n — 1,

1 if m <k

(8 (g(a)) = S

2 (9(@) { o

Since g: A — B,, is an embedding such that g(e*) = e and ¢(1) = 1, this yields that for

every positive k < n — 1,
m
2 (a) =
fra®) {e* if m

As h: A — B, is also an embedding such that h(e*) = e and h(1) = 1, we obtain that for
every positive k < n — 1,

e (h(a)) = {
Together with (25), this yields |atg, (h(a))| = m. X
Claim 3.16. For every a,b € at(A),
if a # b, then atp,(g(a)) Natp,(9(b)) = 0 = atp, (h(a)) Natp, (h(D)).

Proof of the Claim. Suppose that a # b. By symmetry it suffices to show that atg, (g(a)) N
atg, (g(b)) = 0. From a # b and a,b € at(A) it follows that a A% b = 0. Consequently,
g(a) ABr g(b) = 0 because g: A — B, is an embedding. Therefore, we conclude that
atg, (g(a)) Natg, (g(b)) = 0. ™

In view of Claims 3.15 and 3.16 there exists a permutation o: at(B,) — at(B,,) such that
olatp, (h(a))] = atg, (g(a)) for every a € at(A). (26)

As B, = A,[%#,], the map o can also be viewed as a permutation of at(A,,). Consequently,
Proposition 3.12 yields an automorphism ¢*: A, — A,,, which by [4, Prop. 9.5] is also an
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automorphism of B,,. To conclude the proof, it only remains to show that g = ¢* o h, for in
this case we can take i = o*.

From the assumption that g, h, and ¢* are homomorphisms of bounded lattices it follows
that g(1) = h(1) = 0*(1) = 1, whence g(1) = o*(h(1)). Therefore, it suffices to show that
g(a) = o*(h(a)) for every a € A — {1}. We will prove that for every a € A — {1},

A B, B, B, B, B,
g@) = g(Vata@) =\ glta@) =\ Vats, o) =\ \olts, ()]
beata(a) beata(a)
n A
-V a*(h(b)):a*(h(\/atA(a))> = o*(h(a)).

beata(a)

The above equalities are justified as follows. The first and the last hold by (6) and the
assumption that a # 1, the second and the second to last because g, h, and ¢* preserve
finite (possibly empty) joins because they are homomorphisms of bounded lattices, the third
by Claim 3.14 and (6), the fourth by (26), and the fifth follows from Claim 3.14 and the
definition of ¢*. Hence, we conclude that g = o* o h. X

Finalizing the proof of the fact that B(n) is a congruence preserving Beth companion
of V(A,) (Theorem 3.9) requires some further investigation of the variety B(n) and its
properties. While V(A,,) lacks the amalgamation property for every n > 3 (see [10, Thm. 2]),
this property holds in the pp expansion B(n) of V(A,), as we proceed to illustrate. To this
end, we will employ the following result [5, Thm. 3.4]* (see also [8, Thm. 3]), together with
the observation that B(n) has the congruence extension property for each n > 3.

Given a quasivariety K, let

*
KRFSI

= Kirst U{A € K: A is trivial}.

Theorem 3.17. Let K be a quasivariety with the relative congruence extension property such
that Kpper 18 closed under nontrivial subalgebras. Then K has the amalgamation property if

and only if K}, has the amalgamation property.

To show that B(n) has the congruence extension property for each n > 3, we rely on the
following preservation result.

Proposition 3.18. Let M be a pp expansion of a quasiwariety K. If K has the relative
congruence extension property, then so does M.

Proof. Suppose that K has the relative congruence extension property. Then consider
A < B € M and 0 € Cony(A). We need to find some ¢ € Cony(B) such that § =
¢l 4. Since A € S(M) = M, from [4, Rem. 12.2] it follows that Conm(A) C Conk(Alg, ),
whence ¢ € Cong(Aly, ). Since M is a pp expansion of K, it is of the form S(K[£x]).
Together with A < B € M, this implies A < B < C for some C € K[£z]. Consequently,
Aly, < Cly, € K. As 0 € Cong(Aly,) and K has the relative congruence extension

20ur formulation of Theorem 3.17 is slightly different from the one of [5, Thm. 3.4]. However, the difference
is insubstantial and amounts to the fact that in [5] the class Kypg is defined as K%,
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property by assumption, there exists n € Conk(C'l,) such that 6 = n[,. Recall from [4,
Prop. 12.13] that C' € K[£#] implies Cony(C) = Conk(Clg, ), whence n € Cony(C). This
yields [z € Cony(B) and 6 = (n]g)[4 because A < B < C and 0 = n[,. Hence, we are

<]

done letting ¢ = 5. X
Proposition 3.19. For every n > 3 the variety B(n) has the congruence extension property.

Proof. We recall that every variety of Heyting algebras has the congruence extension property.
In particular, V(A,) has the congruence extension property for every n > 3. Therefore,
Proposition 3.18 yields that the pp expansion B(n) of V(A,) has the congruence extension
property. X

Proposition 3.20. For every n > 3 the variety B(n) has the amalgamation property.

Proof. Recall from Proposition 3.19 that the variety B(n) has the congruence extension
property. Moreover, B(n)gg is closed under subalgebras by Proposition 3.10. Therefore,
in view of Theorem 3.17, in order to prove that B(n) has the amalgamation property, it
suffices to show that B(n)%, has the amalgamation property. To this end, consider a pair of
embeddings hy: A — B and hy: A — C with A, B,C € B(n)},. We need to find a pair of
embeddings ¢g;: B — D and go: C — D with D € B(n)f, such that g; o hy = g5 0 hs.

We have two cases depending on whether A is trivial or nontrivial. First, suppose that A
is trivial. As B(n)gg is closed under subalgebras by Proposition 3.10 and finitely subdirectly
irreducible algebras are nontrivial, we obtain that no member of B(n )y has a trivial subalgebra.
Since A embeds into B and C), this yields B, C ¢ B(n)yg. Therefore, B and C' are trivial
because B,C € B(n)i,. Consequently, A, B, and C are all trivial and the embeddings
hi: A — B and hy: A — C are isomorphisms. Therefore, we may assume that A = B = C
and that h; and hy are the identity map 7 on A. Hence, letting D = A and ¢g; = g = i, we
are done.

Next we consider the case where A is nontrivial. Since A embeds into B and C', we obtain
that B and C' are also nontrivial. Together with B, C' € B(n)},, this yields B, C € B(n)gg.
Recall from Proposition 3.10 that B(n)w = IS(B,), whence B,C € IS(B,). Therefore,
we may assume that B = C' = B, and that h; and hy are embeddings of A into B,.
By Proposition 3.13(ii) there exists ¢ € aut(B,) such that hy = i o0 hy. Let D = B,,
go = 1, and ¢; the identity map on B,,. Clearly, g1, ¢o: B,, — B,, are embeddings such that
giohy="hy =i0hy=gyohs,. D

We are now ready to prove Theorem 3.9.

Proof. Recall that B(n) is a pp expansion of V(A,,). Moreover, since V(A,,) has the congruence
extension property, we can apply [4, Thm. 12.4(ii)], obtaining that B(n) is congruence
preserving. Hence, by [4, Thm. 11.6] it will be enough to prove that B(n) has the strong
epimorphism surjectivity property. Recall from Propositions 3.10 and 3.20 that B(n) is an
arithmetical variety with the amalgamation property. Therefore, in view of [4, Cor. 7.16], it
will be enough to show that every C € B(n)g lacks proper B(n)-epic subalgebras. To this
end, consider A < C € B(n)pg with A < C proper. Then there exists b € C' — A. Moreover,
we may assume that C' < B,, by Proposition 3.10, whence A < C < B,,.
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Let i be the identity map on B,,. As i € end(B,,) and b € C, to conclude the proof, it will
be enough to find some h € end(B,,) such that h[, = i[ 4 and h(b) # i(b). For, by considering
the restrictions of h and i to C < B,,, we obtain that A < C' is not B(n)-epic, as desired.

We have two cases: either e ¢ A or e € A. First, suppose that e ¢ A. Since A < B,,, we
have Ay < (B,)[4 = A,. Together with e ¢ A and (3), this yields A = {0,1}. Then 0 < b
because b ¢ A. Let a € atg, (b) and consider the map h: B, — B, defined for every ¢ € B,

as

Me) = {1 ?faéc;

0 ifage
Since h € end(A,) and B, = A,[%x,]|, from [4, Prop. 9.5] it follows that h € end(B,,).
Moreover, a € atpg,(b) and the definition of h imply h(b) = 1. Then h(b) # b because
b¢ A=1{0,1}. Thus, h,i: B, — B, are homomorphisms such that h(b) # b = i(b) and
hi4 =14 (the latter because A = {0,1} and both h and i preserve the constants 0 and 1).
Lastly, we consider the case where e € A. As A < C is proper and C < B,,, there exists
be C—(AU{e}) C B, — (AU{e}). By Proposition 3.13(i) there also exists h € aut(B,,)
such that b # h(b) and a = h(a) for every a € A. Thus, h,i: B,, — B,, are homomorphisms
such that hl, =i, and h(b) # b = i(b). X

Lastly, we prove Theorem 3.3. Notice that this concludes the proof of Theorem 3.2.

Proof. As B(n) is a congruence preserving Beth companion of V(A,) by Theorem 3.9, it
will be enough to show that B(n) is not equational. Suppose the contrary, with a view to
contradiction. Then let a be an atom of B,, and consider C' = SgP"(a). The following is an
immediate consequence of the definition of C.

Claim 3.21. The universe of C is {0,a,—a,e,1}. Moreover, the Heyting algebra reduct of
C is isomorphic to Ay with minimum 0, mazimum 1, second largest element e, and atoms a
and —a.

As a is an atom of B,, and A,, shares its bounded lattice reduct with B,,, the number of
atoms of A,, below a is 1. Since A,, has n > 3 atoms, from (7) it follows that the number of
atoms of A, below —a isn —1 > 3 — 1 > 2. Therefore, from Corollary 3.8 it follows that
E}Blfn(a) =1 and Eﬁf‘n(—'a) =e. As C < B, we obtain

Eﬁyn(a) =1 and Egn(—'a) =e. (27)

Recall from the assumptions that B(n) is equational. Therefore, by [4, Rem. 11.12(vi)]
it is faithfully term equivalent relative to V(A,) to a Beth companion M of V(A,,) induced
by implicit operations defined by conjunctions of equations. By [4, Thm. 10.4] the Beth
companion M is of the form V(A,,)[£%] with F C ext.,(V(A,)) and £% an F-expansion of the
language &£ of Heyting algebras. Furthermore, recall that B(n) is a variety by Proposition 3.10.
Therefore, from [4, Rem. 11.12(v)] it follows that the class V(A,,)[£%] is also a variety.

Let 7 and p be the maps witnessing the fact that B(n) and V(A,,)[£%] are faithfully term
equivalent relative to V(A,,). We may assume that for every D € B(n),

7(D) € V(Ay)[£F] and Dlg = 7(D)lg. (28)
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As C < B,, € B(n) and B(n) is a variety by Proposition 3.10, we have C € B(n). Then
7(C) € V(A,)[£L%] by the left hand side of (28). Consequently, there exists D € V(A,,) such
that D[£%] is defined and 7(C') = D[£%]. Together with the right hand side of (28), this
yields

Cly =7(C)ly = DI%%]ly = D.

In view of the above display, D is the Heyting algebra reduct of C' and, therefore, is isomor-
phic to Ay with atoms a and —a by Claim 3.21. This allows us to apply Proposition 3.12 to
the permutation o: at(D) — at(D) that switches a and —a, thus obtaining an automorphism
c*: D — D with

0*(a) =—-a and o*(1) = 1. (29)
Moreover, from 7(C) = D[£%] it follows that C = p7(C) = p(D[£%]). Together with (27),
this implies

Pty )P (@) =1 and p((y,,)PHH (a) =e. (30)
Recall from [4, Prop. 10.22(ii)] that there exists g € ext,,(V(A,,)) such that
plp,,, )P = gP. (31)

Together with the left hand side of (30), this yields gP(a) = 1. As the implicit operation g is
preserved by homomorphisms, we can apply the automorphism ¢* of D in (29) to deduce

97 (ma) = gP(0*(a)) = 0" (g () = 0*(1) = 1
and, therefore, p((y, . )P¥7)(=(a)) = 1 by (31). Since 1 # e, this contradicts the right hand

side of (30). Hence, we conclude that B(n) is a congruence preserving Beth companion of
V(A,) that is not equational. X
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